В правильном треугольнике высоты, биссектрисы и медианы, опущенные из одной вершины совпадают и равны между собой, то есть АА1=ВВ1=СС1 Медианы точкой пересечения делятся в отношении 2:1 ⇒ ВО=АО=СО=2х, ОА1=ОВ1=ОС1=х; По условию K, M и N – середины отрезков АО, ВО и СО соответственно ⇒ МО=КО=NO=АО/2=2х/2=х ⇒МО=КО=NO=ОА1=ОВ1=ОС1=х ⇒A1MC1KB1N=правильный шестиугольник В равностороннем треугольнике высота=а√3/2 BB1=BO+OB1=2x+x=3x BB1=а√3/2 а√3/2=3x x=а√3/6 OB1=x OC=2x B1C²=OC²-OB1²=4x²-x²=3x² B1C=√3x²=x√3 В1N-медиана для треугольника ОСВ1 В1N²=(2( ОВ1²+В1С²)-ОС²)/4=( 2(x²+3x²)-4x² )/4=(8x²-4x²)/4=4x²/4=x² В1N√x²=x=а√3/6 P=6x=6*а√3/6=a√3 отв: a√3
Медиана равностороннего треугольника АА₁=ВВ₁=СС₁=а√3/2 Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. АО=ВО=СО=2/3*а√3/2=а√3/3 ОА₁=ОВ₁=ОС₁=1/3*а√3/2=а√3/6 АК=КО=ВМ=МО=СN=NО=АО/2=а√3/6 Т.к. каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины, то получается, что медианы делят ΔАВС на 6 одинаковых прямоугольных треугольников: ΔАОС₁=ΔВОС₁=ΔВОА₁=ΔСОА₁=ΔСОВ₁=ΔАОВ₁ Рассмотрим ΔАОС₁ - в нем медиана С₁К опущена из прямого угла на гипотенузу, значит С₁К=АО/2=АК=КО=а√3/6 Периметр А₁МС₁КВ₁N: Р=А₁М+МС₁+С₁К+КВ₁+В₁N=6С₁К=6*а√3/6=а√3
Медианы точкой пересечения делятся в отношении 2:1 ⇒ ВО=АО=СО=2х, ОА1=ОВ1=ОС1=х;
По условию K, M и N – середины отрезков АО, ВО и СО соответственно ⇒
МО=КО=NO=АО/2=2х/2=х ⇒МО=КО=NO=ОА1=ОВ1=ОС1=х ⇒A1MC1KB1N=правильный шестиугольник
В равностороннем треугольнике высота=а√3/2
BB1=BO+OB1=2x+x=3x
BB1=а√3/2
а√3/2=3x
x=а√3/6
OB1=x
OC=2x
B1C²=OC²-OB1²=4x²-x²=3x²
B1C=√3x²=x√3
В1N-медиана для треугольника ОСВ1
В1N²=(2( ОВ1²+В1С²)-ОС²)/4=( 2(x²+3x²)-4x² )/4=(8x²-4x²)/4=4x²/4=x²
В1N√x²=x=а√3/6
P=6x=6*а√3/6=a√3
отв: a√3
АА₁=ВВ₁=СС₁=а√3/2
Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины.
АО=ВО=СО=2/3*а√3/2=а√3/3
ОА₁=ОВ₁=ОС₁=1/3*а√3/2=а√3/6
АК=КО=ВМ=МО=СN=NО=АО/2=а√3/6
Т.к. каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины, то получается, что медианы делят ΔАВС на 6 одинаковых прямоугольных треугольников:
ΔАОС₁=ΔВОС₁=ΔВОА₁=ΔСОА₁=ΔСОВ₁=ΔАОВ₁
Рассмотрим ΔАОС₁ - в нем медиана С₁К опущена из прямого угла на гипотенузу, значит С₁К=АО/2=АК=КО=а√3/6
Периметр А₁МС₁КВ₁N:
Р=А₁М+МС₁+С₁К+КВ₁+В₁N=6С₁К=6*а√3/6=а√3