В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Яник111111111
Яник111111111
17.01.2023 16:07 •  Геометрия

Составьте уравнение прямой, которая проходит через точки (-1;-6) и (1;2)

Показать ответ
Ответ:
Даниил520393
Даниил520393
20.07.2021 04:33

Вычисления таких задач проще простого. Сумма углов треугольника равна 180 градусов, углы при основании (beta) равны. Отсюда на все случаи углов при вершине alpha следует применять формулу

beta=(180-alpha)/2.

Если угол при вершине 110 градусов, то у основания равнобедренного треугольника углы равны

beta=(180-110)/2=35 (градусов).

Пусть задан угол при основании равнобедренного треугольника и он равен 50 градусов, тогда угол при вершине равен

alpha=180-2*50=80 (градусов).

Меняете в формуле значения угла (50) на свой и находите угол в вершине треугольника для любого равнобедренного треугольника.

По мере изучения свойств треугольника, формулы для вписанных и описанных окружностей, возрастает и сложность вычислений и разнообразие задач, которые можно решить. Таким образом в 8-9 классе задачи на треугольники требуют знаний немало важных формул без которых вычисления невозможно выполнить.

Объяснение:

0,0(0 оценок)
Ответ:
BandaMin
BandaMin
21.02.2023 19:49

1. Прежде заметим, что AB = CD = 3√2; AD = BC = 5; (рисунок) ∠A = ∠C = 45°; ∠B = ∠D = 180° - 45° = 135° (Свойства параллелограмма)

а) AD · AB = BC · AB = |BC| · |AB| · cos ∠A = 5 · 3√2 · cos 45° = 15√2 · √2 / 2 = 15

б) BA · BC = |BA| · |BC| · cos ∠B =  3√2 · 5 · cos 135° = -15√2 · √2/2 = -15

в) AD · BH = 0, так как AD ⊥ BH

2.  a {-4; 5}, b {-5; 4} - вектора

a · b = a₁b₁ + a₂b₂ = -4·(-5) + 5·4 = 20 + 20 = 40

3.  a {-12; 5}, b {3; 4} - вектора

cos ∠(a, b) = a · b / (|a| · |b|)  

a · b = -12·3 + 5·4 = -36 + 20 = -16

|a|² = (-12)² + 5² = 144 + 25 = 169 ⇒ |a| = √169 = 13

|b|² = 3² + 4² = 9 + 16 = 25 ⇒ |b| = √25 = 5

cos ∠(a, b) = -16 / (13·5) = -16/65

4.  m {3; y}, n {2; -6} - ненулевые вектора

m ⊥ n ⇔ m·n = 0 (m,n ≠ 0)

Вроде так

m·n = 3·2 + y·(-6) = 6 - 6y = 0

-6y = -6

y = 1

5. Для того, чтобы "выйти" на cos ∠B нам понадобятся вектора BA и BC. Найдем их координаты:

BA {3 - 0; 9 - 6} = {3; 3}

BC {4 - 0; 2 - 6} = {4; -4}

BA · BC = 3 · 4 + 3 · (-4) = 12 - 12 = 0.

Так как BA, BC ≠ 0 ⇒ BA ⊥ BC ⇒ cos ∠B = 0

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота