Если соединить центры этих окружностей с основанием высоты, то эти отрезки будут биссектрисами прямых углов, которые высота образует с гипотенузой. Поэтому они перпендикулярны. Поскольку при этом длины касательных от основания высоты к обеим окружностям равны радиусам, то расстояния от него до центров равны величине диагонали квадрата со стороной r1 и r2. Искомое расстояние (в квадрате) отсюда равно (√2*r1)^2 + (√2*r2)^2 = 2*(r1^2 + r2^2); Для треугольника с катетом 1 и углом в 30° стороны равны 1, √3 и 2. Отсюда r = (1 + √3 - 2)/2 = (√3 - 1)/2; это радиус окружности, вписанной в АВС. Коэффициенты подобия для треугольников равны 1/2 и √3/2 (у одно из треугольников меньший катет - это высота АВС, равная √3/2, а у другого эта высота - больший катет, откуда меньший равен 1/2). поэтому r1 = r/2; r2 = r√3/2; легко видеть, что искомое расстояние d = √2*r (треугольник, образованный отрезками соединяющими центры с основанием высоты и между собой, оказался тоже подобный исходному, то есть в нем гипотенуза в 2 раза больше меньшего катета, равного √2*r1 = √2*r/2; ответ d = √2*(√3 - 1)/2
А) Функции будут параллельны по отношении друг к другу. Причем, вторая функция (P.S "игрек" я не буду писать, поди, не запутаетесь) 2x-4 ниже графика 2x б) В этом случае графики имеют одну общую точку, поскольку эти две функции задаются прямыми, и их коэффициенты пропорциональности НЕ равны. Давайте проверим, какую общую точку они будут иметь:
Подставив x в любое из функций, получим, что y=7. Т.е общая точка - это M(4;7)
в) Эти функции равны. Они имеют бесконечно много общих точек.
г) Подробно расписывать решение не буду. Только скажу, что найдем общую точку:
Общая точка - это точка M(2;2). Прямые имеют только одну общую точку, значит, графики пересекаются только в ОДНОЙ точке.
Для треугольника с катетом 1 и углом в 30° стороны равны 1, √3 и 2.
Отсюда r = (1 + √3 - 2)/2 = (√3 - 1)/2; это радиус окружности, вписанной в АВС.
Коэффициенты подобия для треугольников равны 1/2 и √3/2 (у одно из треугольников меньший катет - это высота АВС, равная √3/2, а у другого эта высота - больший катет, откуда меньший равен 1/2). поэтому r1 = r/2; r2 = r√3/2; легко видеть, что искомое расстояние d = √2*r (треугольник, образованный отрезками соединяющими центры с основанием высоты и между собой, оказался тоже подобный исходному, то есть в нем гипотенуза в 2 раза больше меньшего катета, равного √2*r1 = √2*r/2; ответ d = √2*(√3 - 1)/2
б) В этом случае графики имеют одну общую точку, поскольку эти две функции задаются прямыми, и их коэффициенты пропорциональности НЕ равны. Давайте проверим, какую общую точку они будут иметь:
Подставив x в любое из функций, получим, что y=7.
Т.е общая точка - это M(4;7)
в) Эти функции равны. Они имеют бесконечно много общих точек.
г) Подробно расписывать решение не буду. Только скажу, что найдем общую точку:
Общая точка - это точка M(2;2).
Прямые имеют только одну общую точку, значит, графики пересекаются только в ОДНОЙ точке.