Спо ! 1) полная поверхность октаэдра с ребром а равновелика полной поверхности правильного тетраэдра. найдите ребро тетраэдра. 2) в кубе abcda1b1c1d1 с ребром 1 отрезки ab1, b1d1 и d1a - диагонали граней. докажите, что cb1d1a - правильный тетраэдр, и найдите его полную поверхность.
Если мы продлим радиус OA до точки пересечения с окружностью с радиусом OB (пусть он пересекает эту окружность в точке C), то A окажется средней точкой OC, потому что радиус OA = 2, а радиус OC = 4. OC/2 = 4/2 = 2. Значит, AB - медиана треугольника ACO. OB = OC, потому что это радиусы большей окружности. Значит, треугольник BCO равнобедренный, поэтому углы при основании равны. Сумма углов треугольника равна 180, а третий угл нам дан по условию. Найдём два оставшихся.
x = (180 - 60)/2 = 120/2 = 60
Значит все углы по 60 градусов, значит, треугольник равносторонний, значит медиана AB также является биссектрисой и высотой, значит, ABO - прямоугольный треугольник с прямым углом B, значит, мы можем найти AB по теореме Пифагора:
AB = √(OB^2 - AO^2)
AB = √(4^2 - 2^2)
AB = √(16 - 4)
AB = √(12)
AB = √(4 * 3)
AB = 2√3
Верхний четырёхугольник рис.6,(слева буквы не видно,обозначим её Х):
ХО=МN (по условию),
OM=XN (по условию),
ОN=ON (общая сторона),
следовательно:
треуг.ОХN=треуг.ОМN по 3 признаку равенства треугольников (по 3-м сторонам).
2) рис.7
<АВF= <PFB (по условию),
<AFB= < PBF (по условию),
ВF= BF (общая сторона),след-но:
тр.АВF= тр.РВF по 2 признаку равенства треугольников (по стороне и 2-м ,прилежащим к ней углам)
3) рис.9.а)
<А= <В - след-но треуг-к МВА-равнобедренный и
МВ=МА
<МВD=180°- <В (cмежные
<MAC=180° - <A углы),след-но:
<МВD=<MAC (т.к <А = <В),
DB=AC ( по условию) , след-но:
тр.МВD = тр MAC по 1 признаку равенства треугольников (по 2-м сторонам и углу между ними)
б)продолжение прикреплю.