Объяснение:
8)
<135°+<45°=180°, это доказывает что
АЕ||ВD
AE||BD, EC- секущая
<ВDE=<80°, соответственные углы.
<ВDE=80°
<BDE+<BDC=180°, смежные углы
<ВDC=180°-<BDE=180°-80°=100°
<BDC=<EDK, вертикальные углы
<ЕDK=100°
ответ: <ВDE=80°; <BDC=100°; <EDK=100°
17)
∆ABD- равнобедренный треугольник
АВ=BD, по условию.
В равнобедренном треугольнике углы при основании равны
<ВАD=<ВDA
AC- биссектрисса угла <BAD
<CAD=<BAD/2=68°/2=34°
<ACB=<CAD+<ADB, теорема о внешнем угле
<АСB=68°+34°=102°
ответ: <АСВ=102°
29)
∆ТОS- прямоугольный треугольник.
Сумма острых углов в прямоугольном треугольнике равна 90°
<ТОS+<OTS=90°
<TOS=90°-<OTS=90°-65=25°
<POT=<TOS, по условию
<РОS=2*<TOS=25°*2=50°
∆POS- прямоугольный треугольник
<РОS+<OPS=90°
<OPS=90°-<POS=90°-50°=40°
ответ: <ОРS=40°
Zmeura1204
По теореме о сумме углов треугольника имеем:
Угол А + угол В + угол С = 180 градусов;
44 градуса + угол В + 90 градусов = 180 градусов;
угол В = 180 градусов-44градуса-90градусов=46 градусов.
По теореме синусов имеем: АС/sinB=AB/sinC; 15/sin46 = AB/sin90 АВ=15*sin90/sin46=15*1/0.7193=приблизительно 20
Объяснение:
8)
<135°+<45°=180°, это доказывает что
АЕ||ВD
AE||BD, EC- секущая
<ВDE=<80°, соответственные углы.
<ВDE=80°
<BDE+<BDC=180°, смежные углы
<ВDC=180°-<BDE=180°-80°=100°
<BDC=<EDK, вертикальные углы
<ЕDK=100°
ответ: <ВDE=80°; <BDC=100°; <EDK=100°
17)
∆ABD- равнобедренный треугольник
АВ=BD, по условию.
В равнобедренном треугольнике углы при основании равны
<ВАD=<ВDA
AC- биссектрисса угла <BAD
<CAD=<BAD/2=68°/2=34°
<ACB=<CAD+<ADB, теорема о внешнем угле
<АСB=68°+34°=102°
ответ: <АСВ=102°
29)
∆ТОS- прямоугольный треугольник.
Сумма острых углов в прямоугольном треугольнике равна 90°
<ТОS+<OTS=90°
<TOS=90°-<OTS=90°-65=25°
<POT=<TOS, по условию
<РОS=2*<TOS=25°*2=50°
∆POS- прямоугольный треугольник
Сумма острых углов в прямоугольном треугольнике равна 90°
<РОS+<OPS=90°
<OPS=90°-<POS=90°-50°=40°
ответ: <ОРS=40°
Zmeura1204