1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6. В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED. ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED). 2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE. ∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам. 3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC EF/10 = 6/13 ⇒ EF = 60/13 4) Пусть h - высота треугольника АВС, опущенная на боковую сторону. Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр 13h/2 = √(18 · 5 · 5 · 8) 13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60 h =120/13 5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований. Sade/Sdcf = DE/DF DF = AC = 10 как противолежащие стороны параллелограмма, DE = DF - EF = 10 - 60/13 = 70/13 Sade/Sdcf = (70/13) / 10 = 7/13
В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED.
ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED).
2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE.
∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам.
3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC
EF/10 = 6/13 ⇒ EF = 60/13
4) Пусть h - высота треугольника АВС, опущенная на боковую сторону.
Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр
13h/2 = √(18 · 5 · 5 · 8)
13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60
h =120/13
5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований.
Sade/Sdcf = DE/DF
DF = AC = 10 как противолежащие стороны параллелограмма,
DE = DF - EF = 10 - 60/13 = 70/13
Sade/Sdcf = (70/13) / 10 = 7/13
дано: ab=ad,
∠bac=∠dac
доказать: ∆abc=∆adc
доказательство:
1) ab=ad (по условию)
2) ∠bac=∠dac (по условию)
3) ac — общая сторона.
следовательно, ∆abc=∆adc (по двум сторонам и углу между ними)
дано:
ao=bo,
co=do
доказать: ∆aoc=∆bod.
доказательство:
определяем те элементы, о равенстве которых известно по условию :
1) ao=bo (по условию)
2) co=do (по условию).
3) ∠aoc = ∠bod (как вертикальные).
дано:
ab=ac,
af=ak
доказать: ∆abk=∆acf
доказательство:
1) ab=ac (по условию)
2) af=ak (по условию)
3) ∠a — общий.
следовательно, ∆abk=∆acf (по двум сторонам и углу между ними).
вычислите периметр равнобедренного треугольника авс, если периметр треугольника adc равен 18 cм, и cd = 6 cм и ad = bd (fig.5)
доказательство:
периметр треугольника adc = ac + cd + ad = 18 ⇔ ac + 6 + ad = 18 ⇔ ac + ad = 12
потому что ac = bc (треугольники являются равнобедренными) и ad = db, следовательно ac + ad = db +bc = 12
периметр треугольника abc = ab + ac + bc = ad + db + ac + bc = 12 + 12 = 24 cм.