Прямая а может пересекать обе плоскости, если не лежит ни в одной из них (рис. 1) Прямая а может лежать в одной из плоскостей (например, на рис. 2 в плоскости β), тогда другую плоскость она пересекает. Прямая b может не лежать ни в одной из плоскостей, тогда она параллельна каждой. (рис. 3) Прямая b может лежать в одной плоскости (например, на рис. 4 в β), тогда она параллельна другой плоскости. Но пересекать плоскости прямая b не может. Взаимное расположение прямых а и b однозначно определить нельзя. Они могут быть скрещивающимися или пересекаться. Но не могут быть параллельны. 2. Любые три точки, не лежащие на одной прямой, задают единственную плоскость. Пусть точки А, В и С лежат в одной плоскости. АВ⊂α, DC∩α = C, C∉AB ⇒ АВ и CD - скрещивающиеся. К - середина AD, Р - середина СВ. КР = 3 см. Проведем КТ║АВ и ТР║CD. Тогда угол между прямыми КТ и ТР будет равен углу между прямыми АВ и CD. КТ - средняя линия ΔABD ⇒ КТ = АВ/2 = 3 см ТР - средняя линия ΔСBD ⇒ ТР = CD/2 = 3 см ΔКТР равносторонний, значит ∠КТР = 60°, значит и угол между прямыми АВ и CD равен 60°
24см²
Объяснение:
△ABD - равнобедренный т.к. AB = BD по условию,
Пусть BH - высота, она проведена к основанию,
Высота равнобедренного треугольника, проведённая к его основанию является так же и медианой.
⇒ BH - медиана;
AH = HD т.к. H - основание медианы;
AH = AD:2 = 6см:2 = 3см.
△AHB - прямоугольный т.к. ∠AHB = 90°,
Квадрат гипотенузы равен сумме квадратов катетов (т. Пифагора).
AB² = AH²+BH²;
BH² = AB²-AH²;
BH² = 5²-3²;
BH² = 25-9 = 16 = 4²;
BH = 4 см.
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
BH - высота параллелограмма ABCD, проведённая к стороне AD;
S = BH·AD;
S = 4см·6см = 24см².
Объяснение:
Прямая а может пересекать обе плоскости, если не лежит ни в одной из них (рис. 1) Прямая а может лежать в одной из плоскостей (например, на рис. 2 в плоскости β), тогда другую плоскость она пересекает. Прямая b может не лежать ни в одной из плоскостей, тогда она параллельна каждой. (рис. 3) Прямая b может лежать в одной плоскости (например, на рис. 4 в β), тогда она параллельна другой плоскости. Но пересекать плоскости прямая b не может. Взаимное расположение прямых а и b однозначно определить нельзя. Они могут быть скрещивающимися или пересекаться. Но не могут быть параллельны. 2. Любые три точки, не лежащие на одной прямой, задают единственную плоскость. Пусть точки А, В и С лежат в одной плоскости. АВ⊂α, DC∩α = C, C∉AB ⇒ АВ и CD - скрещивающиеся. К - середина AD, Р - середина СВ. КР = 3 см. Проведем КТ║АВ и ТР║CD. Тогда угол между прямыми КТ и ТР будет равен углу между прямыми АВ и CD. КТ - средняя линия ΔABD ⇒ КТ = АВ/2 = 3 см ТР - средняя линия ΔСBD ⇒ ТР = CD/2 = 3 см ΔКТР равносторонний, значит ∠КТР = 60°, значит и угол между прямыми АВ и CD равен 60°