Пусть треугольник ABC : <C =90° ; <B=<C =45° (AC =BC треугольник равнобедренный ) ; AB =18 см ; вписанный прямоугольник MNEF ( M∈[AC] , N∈ [BC] , E , F ∈ [ AB] ) .
a) MF : MN = 2 : 5 . MF =2x ; MN =5x ; P =2(MF+MN) =2(2x+5x) =14x. В ΔAFM : AF =MF =2x ; В ΔBEN : BE =NE =MF =2x ; AF +FE +EB =18 см ; * * *FE=MN =5x * * * 2x +5x+2x =18⇒ x =2(см) P =14x =14*2 см =28 см.
б) MF : MN = 5 : 2. MF =5x ; MN =2x ; P =2(MF+MN) =2(5x+2x) =14x. 5x +2x+5x =18⇒12x =18⇔x=1,5 (см) . P =14x=14*1,5 см = 21 см .
AB =18 см ;
вписанный прямоугольник MNEF ( M∈[AC] , N∈ [BC] , E , F ∈ [ AB] ) .
a) MF : MN = 2 : 5 . MF =2x ; MN =5x ; P =2(MF+MN) =2(2x+5x) =14x.
В ΔAFM : AF =MF =2x ;
В ΔBEN : BE =NE =MF =2x ;
AF +FE +EB =18 см ; * * *FE=MN =5x * * *
2x +5x+2x =18⇒ x =2(см)
P =14x =14*2 см =28 см.
б) MF : MN = 5 : 2. MF =5x ; MN =2x ; P =2(MF+MN) =2(5x+2x) =14x.
5x +2x+5x =18⇒12x =18⇔x=1,5 (см) .
P =14x=14*1,5 см = 21 см .
ответ : 28 см , 21 см .
Дано: ΔАВС, АВ=1 см, АС=8 см, ∠А=60°. Найти ВС.
По теореме косинусов
ВС²=АВ²+ВС²-2*АВ*ВС*сos60=1+64-2*1*8*1/2=65-8=57
ВС=√57≈7,55 см