В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
twentytw
twentytw
11.06.2020 13:49 •  Геометрия

средняя линия равнобедренной трапеции 92 см а одно из оснований 158см. Найдите длину второго основания трапеции

Показать ответ
Ответ:
бюро
бюро
05.12.2021 09:15

Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:

1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.

2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.

0,0(0 оценок)
Ответ:
45667889
45667889
13.05.2021 02:16

1) Отразим рисунок относительно прямой AB, окружности перейдут сами в себя, а K – перейдёт в точку K', симметричную относительно прямой AB. Если K не лежит на AB, то K и K' не совпадают, и K' – тоже точка касания, чего быть не может.

2) Радиусы, проведённые в точку касания, перпендикулярны касательной, поэтому AN и BM перпендикулярны NM, а тогда параллельны, ANMB – прямоугольная трапеция.

Проведём высоту трапеции AD. ANMD – прямоугольник, поэтому MD = AN = r, тогда BD = 2r. Кроме того, AB = AK + KB = 4r, поэтому ∠DAB = 30° (противолежащий катет равен половине гипотенузы), а по теореме Пифагора AD=\sqrt{AB^2-BD^2}=2\sqrt3r.

Площадь трапеции ANMB равна (AN + MB) \cdot AD / 2 = 4\sqrt3r^2

Площадь сектора KAN с центральным углом 90° + 30° = 120° = π/3 равна \pi r^2/3

Площадь сектора KBM с центральным углом 90° - 30° = 60° = π/6 равна \pi(3r)^2/6=3\pi r^2/2

Площадь искомой фигуры

4\sqrt3r^2-\dfrac{\pi r^2}{3}-\dfrac{3\pi r^2}2=\left(4\sqrt3-\dfrac{11\pi}6\right)r^2


Решить ! две окружности, радиусы которых равны r и 3r, касаются внешне в точке k. к этим окружностям
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота