Средняя линия трапеции составляет 7 см, а одно из оснований находится на расстоянии 4 см от другого. более см. Найдите основания трапеции. А. 6 см и 8 см B.9см и 5см C.10см и 4см D11см и 3см
Площадь трапеции равна произведению полусуммы оснований на высоту трапеции: Sabcd = (ВС+AD)*h/2. Проведем высоту трапеции ВН (h) и среднюю линию трапеции КМ. Средняя линия трапеции делит боковые стороны и высоту трапеции пополам, значит в треугольнике АВК КМ - медиана, которая делит этот треугольник на два РАВНОВЕЛИКИХ: МКВ и МКА. Найдем площадь одного из них - площадь Smkb. Она равна половине произведения высоты, опущенной на основание. Пусть основание МК. Высота, опущенная на это основание, равна половине высоты трапеции. А основание МК - это средняя линия трапеции: (ВС+АD)/2. Итак: Smkb =(1|2)* [(BC+AD)/2]*h/2= (BC+AD)*h/8. Как сказано выше, Sabk = 2*Smkb = (ВС+АD)*h/4. Но это как раз половина площади трапеции! Что и требовалось доказать.
Проведем высоту трапеции ВН (h) и среднюю линию трапеции КМ.
Средняя линия трапеции делит боковые стороны и высоту трапеции пополам, значит в треугольнике АВК КМ - медиана, которая делит этот треугольник на два РАВНОВЕЛИКИХ: МКВ и МКА.
Найдем площадь одного из них - площадь Smkb. Она равна половине произведения высоты, опущенной на основание. Пусть основание МК. Высота, опущенная на это основание, равна половине высоты трапеции.
А основание МК - это средняя линия трапеции: (ВС+АD)/2.
Итак: Smkb =(1|2)* [(BC+AD)/2]*h/2= (BC+AD)*h/8.
Как сказано выше, Sabk = 2*Smkb = (ВС+АD)*h/4.
Но это как раз половина площади трапеции! Что и требовалось доказать.
1. ∠AOD = 72°
2. 90°, 90°, 160°
3. a = 5 см
b = 10 см
4. ∠A = ∠D = 48°
∠С = ∠В = 132°
5. BD = 8 см
Объяснение:
1. Диагонали прямоугольника равны и точкой пересечения делятся пополам.
АО = ВО = ОС = OD
ΔАВС равнобедренный с основанием АВ. Углы при основании равны:
∠АВО = ∠ВАО = 36°
∠AOD - внешний для треугольника АОВ, значит равен сумме двух внутренних, не смежных с ним:
∠AOD = ∠АВО + ∠ВАО = 36° · 2 = 72°
2. В прямоугольной трапеции два угла по 90°, так как боковая сторона перпендикулярна основаниям.
Сумма углов трапеции, прилежащих к боковой стороне, равна 180°.
Если ∠А = 20°, то
∠В = 180° - ∠А = 180° - 20° = 160°
3. Противоположные стороны параллелограмма равны.
Пусть х - одна сторона, тогда другая сторона 2х.
P = 2(a + b)
2(x + 2x) = 30
3x = 15
x = 5
a = 5 см
b = 2 · 5 = 10 см
4. Углы при основании равнобедренной трапеции равны.
Тогда ∠A = ∠D = 96 : 2 = 48°.
Сумма углов, прилежащих к боковой стороне трапеции, равна 180°.
∠В = 180° - ∠А = 180° - 48° = 132°
∠С = ∠В = 132°
5. Сумма острых углов прямоугольного треугольника равна 90°.
ΔАВМ: ∠А = 90° - 30° = 60°
Стороны ромба равны, значит ΔABD равнобедренный; угол при его вершине равен 60°, значит он равносторонний.
Тогда ВМ - его высота и медиана:
MD = AM = 4 см
AD = 8 см
BD = AD = 8 см