Срешением ис 1. диагонали прямоугольника авсd пересекаются в точке о. найдите угол между диагоналями, если аво = 30°.
2. в параллелограмме kмnp проведена биссектриса угла мkр, которая пересекает сторону mn в точке е.
а) докажите, что треугольник kме равнобедренный.
б) найдите сторону kр, если ме = 10 см, а периметр параллелограмма равен 52 см.
1) Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
2) Центром является точка (принято обозначать О) пересечения серединных перпендикуляров к сторонам многоугольника.
3) Если прямоугольный треугольник вписан в окружность, значит его гипотенуза - диаметр. Следовательно по теореме Пифагора:
2R = корень из (36+64) и тогда R = 5 (см).
4) Свойство четырехугольника. Четырехугольник можно описать вокруг тогда и только тогда, когда суммы длин его противоположных сторон равны
Пусть по условию a+c=15. Тогда a+c=b+d; 15=b+d
Периметр четырехугольника: P=a+b+c+d=(a+c)+(b+d)=15+15=30 см
5) прости не смог
Объяснение:
Угол АDC=93*
Объяснение:
Дано:
Равнобедренный треугольник АВС
Основания АС
АD- биссектриса.
Угол С=58*
Найти: угол АDC.
Мы знаем что, угол С=58*
Также мы знаем теорему равнобедренного треугольника:
У равнобедренного треугоника углы при основании равны.
Значит, угол С= углу А=58*
Рассмотрим треугольник АDC. Так как АD биссектриса значит, чтобы найти угол А в треугольнике АDC, нам надо 58*:2, так как биссектриса делит угол пополам.
Угол А=58*:2= 29*
Угол А=29*
Теперь мы знаем два угла и соотвественно по этим двум углам мы сможем найти угол АDC по теореме сумма углов треугольника:
Сумма углов треугольника равна 180*
Значит, чтобы найти угол АDC нам надо, из 180*-(58*+29*)= 93*
Угол АDC=93*
ответ: Угол АDC=93*