Срисунком и объяснением., легкие
а)площади квадратов,построенных на сторонах прямоугольника,равны 64см(в квадрате)и 121см(в квадрате) .найти площадь прямоугольника
б)расстояние от точки пересечения диагоналей до стороны прямоугольника в 8 раз меньше,чем эта сторона. найти площадь прямоугольника,если его периметр равен 80 см
а)1 случай.
40°-угол при вершине,значит углы при основании равны по (180°-40°)÷2=70°
ответ:40°;70°;70°.
2 случай.
40°-один из углов при основании,углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(40°×2)=100°
ответ:40°;40°;100°.
б) 1 случай.
60°-угол при вершине,значит каждый угол при основании равен (180°-60°)÷2=60°
ответ:60°;60°;60°.
2 случай.
60°- угол при основании,а углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(60°×2)=60°
ответ:60°;60°;60°.
в) один случай
100°-угол при вершине,значит каждый угол при основании равен (180°-100°)÷2=40°
ответ:100°;40°;40°.
Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH.
Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции.
Sтрапеции=27+33/2 * 6 = 180 см^2
ответ:180 см^2