Срисунком и в прямоугольном треугольнике с прямым углом с ab=10, ac=6. через точку b к плоскости треугольника проведён перпендикуляр bd длинной 15см. найти расстояние от точки d до ab, ac
46. Если скалярное произведение векторов равно нулю, то векторы перпендикулярны.
-2*3-у+1*2=0; у=2-6; у=-4
42. 1)(3;0;-4)*(5;0;-12)=15+48=63; Длина вектора а равна √(9+16)=5; вектора b равна √(25+144)=13 ; cosα=63/(5*13)=63/65; α=arccos(63/65)
2)(-2;2;-1)*(-6;3;6)=12+6-6=12; Длина вектора а равна √(4+4+1)√9=3; вектора b равна √(36+9+36)=9 ; cosα=12/(9*3)=4/9; α=arccos(4/9)
3) а+b=(1;-1;2)+(0;2;1)=(1;1;3)
а-b=(1;-3;1); (а+b)*(а-b)=(1;1;3)(1;-3;1)=1-3+3=1; Длина вектора а+b равна √(1+1+9)√11; вектора а-b равна √(1+9+1)=√11 ; cosα=1/(√11*√11)=1/11; α=arccos(1/11)
Проще разбираться с прямыми в виде у=ах+в. Для параллельных прямых коэффициент а одинаков. Коэффициент в - это точка пересечения прямой с осью Оу. Преобразуем уравнение прямой 3x-5y+6=0: у = (3/5)х + (6/5) = 0,6х + 1,2. Прямая через точку А пересечёт ось Оу в точке: -17+(11*0,6) = -17 + 6,6 = -10,4. Получаем уравнение прямой через точку А: у = 0,6х - 10,4. Осталось преобразовать её в вид Мх+Ny+G=0. Для этого полученное уравнение запишем с коэффициентами в виде дроби: у = (6/10)*х - (104/10). Приведя к общему знаменателю, получаем: 10у = 6х - 104. Или, сократив на 2: 3х - 5у - 52 = 0.
46. Если скалярное произведение векторов равно нулю, то векторы перпендикулярны.
-2*3-у+1*2=0; у=2-6; у=-4
42. 1)(3;0;-4)*(5;0;-12)=15+48=63; Длина вектора а равна √(9+16)=5; вектора b равна √(25+144)=13 ; cosα=63/(5*13)=63/65; α=arccos(63/65)
2)(-2;2;-1)*(-6;3;6)=12+6-6=12; Длина вектора а равна √(4+4+1)√9=3; вектора b равна √(36+9+36)=9 ; cosα=12/(9*3)=4/9; α=arccos(4/9)
3) а+b=(1;-1;2)+(0;2;1)=(1;1;3)
а-b=(1;-3;1); (а+b)*(а-b)=(1;1;3)(1;-3;1)=1-3+3=1; Длина вектора а+b равна √(1+1+9)√11; вектора а-b равна √(1+9+1)=√11 ; cosα=1/(√11*√11)=1/11; α=arccos(1/11)
Для параллельных прямых коэффициент а одинаков.
Коэффициент в - это точка пересечения прямой с осью Оу.
Преобразуем уравнение прямой 3x-5y+6=0:
у = (3/5)х + (6/5) = 0,6х + 1,2.
Прямая через точку А пересечёт ось Оу в точке:
-17+(11*0,6) = -17 + 6,6 = -10,4.
Получаем уравнение прямой через точку А:
у = 0,6х - 10,4.
Осталось преобразовать её в вид Мх+Ny+G=0.
Для этого полученное уравнение запишем с коэффициентами в виде дроби:
у = (6/10)*х - (104/10).
Приведя к общему знаменателю, получаем:
10у = 6х - 104.
Или, сократив на 2:
3х - 5у - 52 = 0.