Соединив центры K и М окружностей
между собой и каждый из них с точкой
касания, получим два треугольника с
общей вершиной в точке А на отрезке между
точками касания окружностей с прямой.
Радиус, проведенный к касательной
в точку касания, перпендикулярен ей
( свойство),
Получившиеся прямоугольные треугольники
подобны по равным вертикальным углам и
накрестлежащим у их центров.
Пусть радиус меньшей окружности будет r,
а большей - R, и пусть часть отрезка между
их точками касания у меньшей окружности
будет х.
Тогда отрезок у большей окружности 5-х
( см. рисунок)
Тогда из подобия треугольников следует
отношение:
r:R=x:(5-x)
4:8=x:(5-x)
8х=20-4x
12x=20
х=5/3- длина отрезка у меньшей окружности
5-5/3=10/3 длина отрезка у большей
окружности
По т.Пифагора
KA2=42+(5/13)2
KA2=16+25/9=169/9
KA=13/3
Из треугольника в большей окружности
MA2=82+(10/3)2=676/9
MA=26/3
KA+MA=13/3+26/3=39/3=13
KM=13 см
наверное так
Итак, нам нужно найти угол между прямой SA и (SBD)?
Давай произведем для начало описание самой задачи(что в ней вообще происходит и какой именно угол нам необходимо найти.
Пусть точка О-является центром основания правильного 4-ехугольника ABCD(квадрата), точка K-середина ребра BS
ΔSOK-является прямоугольным, SO⊥OK,OK⊥(SBD) , т.к OK⊥BC, а BC⊂(SBD),SA⊥(ABCD),SA⊥SC.
Итак, мы выяснили, что SA⊥SC,CK⊥(SBD )⇒ ∠SCK-искомый линейный угол
OK=1/2AB=1/2*1=0,5
SK-высота ΔSBC,то есть SK=√3/2(по формуле равностороннего треугольника)
cos∠SKC=OK/SB=0,5/(√3/2)=1/√3=√3/3
α=arccos√3/3 или
sin∠SKC=SC/KC=√1/3
α=arcsin√1/3
Соединив центры K и М окружностей
между собой и каждый из них с точкой
касания, получим два треугольника с
общей вершиной в точке А на отрезке между
точками касания окружностей с прямой.
Радиус, проведенный к касательной
в точку касания, перпендикулярен ей
( свойство),
Получившиеся прямоугольные треугольники
подобны по равным вертикальным углам и
накрестлежащим у их центров.
Пусть радиус меньшей окружности будет r,
а большей - R, и пусть часть отрезка между
их точками касания у меньшей окружности
будет х.
Тогда отрезок у большей окружности 5-х
( см. рисунок)
Тогда из подобия треугольников следует
отношение:
r:R=x:(5-x)
4:8=x:(5-x)
8х=20-4x
12x=20
х=5/3- длина отрезка у меньшей окружности
5-5/3=10/3 длина отрезка у большей
окружности
По т.Пифагора
KA2=42+(5/13)2
KA2=16+25/9=169/9
KA=13/3
Из треугольника в большей окружности
MA2=82+(10/3)2=676/9
MA=26/3
KA+MA=13/3+26/3=39/3=13
KM=13 см
наверное так
Итак, нам нужно найти угол между прямой SA и (SBD)?
Давай произведем для начало описание самой задачи(что в ней вообще происходит и какой именно угол нам необходимо найти.
Пусть точка О-является центром основания правильного 4-ехугольника ABCD(квадрата), точка K-середина ребра BS
ΔSOK-является прямоугольным, SO⊥OK,OK⊥(SBD) , т.к OK⊥BC, а BC⊂(SBD),SA⊥(ABCD),SA⊥SC.
Итак, мы выяснили, что SA⊥SC,CK⊥(SBD )⇒ ∠SCK-искомый линейный угол
OK=1/2AB=1/2*1=0,5
SK-высота ΔSBC,то есть SK=√3/2(по формуле равностороннего треугольника)
cos∠SKC=OK/SB=0,5/(√3/2)=1/√3=√3/3
α=arccos√3/3 или
sin∠SKC=SC/KC=√1/3
α=arcsin√1/3