Сточки плоскости проведены две наклонные, образующие с плоскостью углы по 45 гралусов. найдите угол между наклонными, если угол между проекциями равен 90 градусов.
2) Беру т. В вне окружности , точку А на окружности, соединяем→ ВА- касательная ; из точки В провожу вторую касательную ВС.
3) Измеряю радиус ОА=3 см
Измеряю отрезки ВА и ВС ( это отрезки касательных) : ВА=4,1 см , ВС=4см. Примерно одинаковые⇒отрезки касательных проведенных из одной точки равны ( надо запомнить этот факт). Измеряю ВО=5,1 см.
Применяю т. Пифагора для ΔОАВ, ∠ВАО=90°.
ОВ²=5,1²=26,01≈26
ОА²+ВА²=3²+4,1²=9+16,81=25,81≈26 . Получили ОВ²=ОА²+ВА², т.е т. Пифагора выполняется .
Объяснение:
1) Строю окружность с центром в т. О;
2) Беру т. В вне окружности , точку А на окружности, соединяем→ ВА- касательная ; из точки В провожу вторую касательную ВС.
3) Измеряю радиус ОА=3 см
Измеряю отрезки ВА и ВС ( это отрезки касательных) : ВА=4,1 см , ВС=4см. Примерно одинаковые⇒отрезки касательных проведенных из одной точки равны ( надо запомнить этот факт). Измеряю ВО=5,1 см.
Применяю т. Пифагора для ΔОАВ, ∠ВАО=90°.
ОВ²=5,1²=26,01≈26
ОА²+ВА²=3²+4,1²=9+16,81=25,81≈26 . Получили ОВ²=ОА²+ВА², т.е т. Пифагора выполняется .
Объяснение:
1) Площадь прямоугольника находится по формуле S=a*b где a, и b - стороны прямоугольника.
если одна сторона MN= 2, то вторую обозначим за x и подставим в формулу:
12=2*x
x=6 (это вторая сторона)
Периметр прямоугольника находится по формуле:
P= (a+b)*2
подставляем:
P= (2+6)*2 = 8*2=16.
2) (Что тут нужно найти? сторону?)
Одна сторона = x
Вторая = 3x
P= 16
подставляем в вышеуказанную формулу нахождения периметра:
16=(3x+x)*2
16=8x
x=16/8=2
подставляем:
Одна сторона = 2
Вторая = 3*2=6
3) Острый угол равен 50° =>
по «сумма 2-х боковых углов параллелограмма равна 180°»
тупой угол равен 180°-50°=130°
в следующий раз, если много заданий - ставьте большее кол-во