Стораны треугольника соответственно равна 2см 5 см 4 см найти : 1 )косинус наименьшего угла треугольника 2) градусную меру наименьшего угла, используя калькулятор
Рассмотрим треугольник МРВ. В нем МР=РВ и уг.МРВ=гр по условию. Значит этот треугольн-и)/равнобедренный и углы при основании МВ равны. т.е. уг.ВМР=уг.РВМ=(180-60)/2=60гр. получается все углы равны, значит треугольник равносторонний. Таким образом: уг.НМР=уг.НКР=60гр. - противолежащие углы параллелограмма. сумма углов прилежащих к одной стороне =180гр. уг.КРМ=уг.КНМ= 180-60=120гр. Рассмотрим треуг. АКН. КН=РМ- противоположные стороны параллелограмма АК=КН т. к. АК=РМ по условию. Значит треугольник равнобедренный уг.КАН=уг.КНА=(180-60)/2=60гр. Раз все углы треугольника равны, значит треуг.АКН-равносторонний и АН=АК. Т. к. АК=ВМ-по условию, то и АН=ВМ.
Значит этот треугольн-и)/равнобедренный и углы при основании МВ равны.
т.е. уг.ВМР=уг.РВМ=(180-60)/2=60гр. получается все углы равны, значит треугольник равносторонний. Таким образом:
уг.НМР=уг.НКР=60гр. - противолежащие углы параллелограмма.
сумма углов прилежащих к одной стороне =180гр.
уг.КРМ=уг.КНМ= 180-60=120гр.
Рассмотрим треуг. АКН. КН=РМ- противоположные стороны параллелограмма
АК=КН т. к. АК=РМ по условию. Значит треугольник равнобедренный
уг.КАН=уг.КНА=(180-60)/2=60гр. Раз все углы треугольника равны, значит треуг.АКН-равносторонний и АН=АК. Т. к. АК=ВМ-по условию, то и АН=ВМ.
Объяснение:
Так как МР=РВ по условию, то ∆МРВ – равнобедренный. Углы при основании равнобедренного треугольника равны, а сумма всех углов равна 180°.
Тогда угол PMB=угол РВМ=(180°–МРВ)÷2=(180°–60°)÷2=60°.
Получим что все углы ∆МРВ равны 60°, тогда ∆МРВ – равносторонний.
Тогда МВ=МР.
Углы при одной стороне параллелограмма в сумме равны 180°.
Значит угол МРК=180°–угол РМВ=180°–60°=120°
Противоположные углы параллелограмма равны.
Следовательно угол РКН=угол РМН=60°; угол МНК=угол МРК=120°.
МР=АК по условию
МР=КН так как противоположные стороны параллелограмма равны.
Углы при основании равнобедренного треугольника равны, а сумма всех углов равна 180°.
Следовательно: угол КАН=угол КНА=(180°–угол АКН)÷2=(180°–60°)÷2=60°.
Получим что все углы ∆АКН равны 60°, тогда ∆АКН – равносторонний. Исходя из этого АН=АК
МВ=МР=АК=АН => МВ=АН.
ответ: 1) 60°; 120; 2) равны.