Сторона AB треугольника ABC продолжена за точку B. На продолжении отмечена точка D так,что BC=BD. Найдите величину угла BCD, если угол ACB равен 35°,а угол BAC равен 45°.ответ дайте в градусах !!
ответ: угол А равен 30°. (Или 150° для тупоугольного треугольника с тупым углом А).
P.S. Насчет подобия - это теорема, которую, может быть, Вы не проходили. Она справедлива, естественно, для любых треугольников. Но для любознательных привожу все варианты.
1.серединные перпендикуляры к сторонам остроугольного треугольника ABC пересекаются в точке О так, что расстояние от этой точки до стороны AC равно 8. найдите длину отрезка CO если AC= 30
2.сторона MP треугольника mkp равна 24. серединные перпендикуляры к сторонам этого треугольника пересекаются в точке D причём DP= 13. Найдите расстояние от точки D до стороны MP
3.серединные перпендикуляры к сторонам остроугольного треугольника ABC пересекаются в точке О. на стороне BC основанием серединного перпендикуляра является точка K. известно что OK= 9, KC= 12. Найдите АО
1. 32
2. 13
3. 21
4. 15
4.серединные перпендикуляры к сторонам треугольника ABC пересекаются в точке О. расстояние от точки О до стороны АС равно 6 см, а до стороны BC равно 8 см. отрезок OB имеет длину 10 см. найдите сторону AC ответ дайте в сантиметрах
1. 12 см
2. 6 см
3. 8 см
4. 16 см
5. В треугольнике ABC серединные перпендикуляры пересекаются в точке О. Известно, что угол AOC равен 120 ГРАДУСОВ, АС =30 Найдите OB. ответ дайте в сантиметрах
<BAC = 30° (150°).
Объяснение:
В прямоугольном треугольнике СЕА косинус угла А равен
CosA = AE/AC.
В прямоугольном треугольнике ADB косинус угла А равен
CosA = AD/AB.
Следовательно, АЕ/АС = AD/AB. => треугольник DAE подобен треугольнику АВС c коэффициентом подобия, равным CosA.
CosA = DE/BC = 3/2√3 = √3 /2.
ответ: угол А равен 30°. (Или 150° для тупоугольного треугольника с тупым углом А).
P.S. Насчет подобия - это теорема, которую, может быть, Вы не проходили. Она справедлива, естественно, для любых треугольников. Но для любознательных привожу все варианты.
1.серединные перпендикуляры к сторонам остроугольного треугольника ABC пересекаются в точке О так, что расстояние от этой точки до стороны AC равно 8. найдите длину отрезка CO если AC= 30
2.сторона MP треугольника mkp равна 24. серединные перпендикуляры к сторонам этого треугольника пересекаются в точке D причём DP= 13. Найдите расстояние от точки D до стороны MP
3.серединные перпендикуляры к сторонам остроугольного треугольника ABC пересекаются в точке О. на стороне BC основанием серединного перпендикуляра является точка K. известно что OK= 9, KC= 12. Найдите АО
1. 32
2. 13
3. 21
4. 15
4.серединные перпендикуляры к сторонам треугольника ABC пересекаются в точке О. расстояние от точки О до стороны АС равно 6 см, а до стороны BC равно 8 см. отрезок OB имеет длину 10 см. найдите сторону AC ответ дайте в сантиметрах
1. 12 см
2. 6 см
3. 8 см
4. 16 см
5. В треугольнике ABC серединные перпендикуляры пересекаются в точке О. Известно, что угол AOC равен 120 ГРАДУСОВ, АС =30 Найдите OB. ответ дайте в сантиметрах
1.
2.
3.
4.