Сторона ab треугольника abc равна 15√3. на стороне bc взята точка k так, что bk=9√3, kc=16√3 и треугольник abc подобен треугольнику kac.найти площадь треугольника kac
Из подобия ( по условию задачи) Δ КСА и Δ АВС ∠ АКС= ∠ ВАС, ∠ КАС = ∠ КВА ∠ СКА с ∠ ВКА образует угол в 180 градусов. Следовательно, ∠ ВКА равен сумме
∠ КСА и ∠ КАС. ⇒∠ ВКА=90 °, из чего следует, что Δ АВС прямоугольный и КА в нем высота. Из отношения сторон в треугольнике АВС и ВКА ВС:АВ =АВ:ВК равны 25√3:15√3=5:3 следует, что три стороны этих прямоугольных треугольников относятся как 3:4:5. Отсюда сторона АК=12√3, а площадь треугольника КАС равна половине произведения его катетов S КАC=16√3*12√3=16*12*3=576 см²
Рассмотрим Δ КСА и Δ ВКА
Из подобия ( по условию задачи) Δ КСА и Δ АВС ∠ АКС= ∠ ВАС, ∠ КАС = ∠ КВА
∠ СКА с ∠ ВКА образует угол в 180 градусов. Следовательно, ∠ ВКА равен сумме
∠ КСА и ∠ КАС. ⇒∠ ВКА=90 °, из чего следует, что Δ АВС прямоугольный и КА в нем высота.
Из отношения сторон в треугольнике АВС и ВКА
ВС:АВ =АВ:ВК равны 25√3:15√3=5:3 следует, что три стороны этих прямоугольных треугольников относятся как 3:4:5. Отсюда сторона АК=12√3, а площадь треугольника КАС равна половине произведения его катетов
S КАC=16√3*12√3=16*12*3=576 см²