Сторона АВ прямоугольника ABCD параллельна плоскости альфа , а сторона AD не параллельна этой плоскости . Определите взаимное расположение в пространстве прямоугольника ABCD и плоскости альфа .
Две параллельные прямые (назовём их а и b) задают плоскость Г (гамма), то есть a и b € Г. Тогда плоскость Г пересекает плоскости А(альфа) и В(бетта) по прямым АБ и А1Б1 соотвественно. По свойству номер 1 параллельных плоскостей (А//В-по усл):"Если 2 параллельные плоскости пересечены третьей, то линии их пересечения параллельны". То есть АБ//А1Б1. Теперь рассмотрим фигуру А1АББ1. В ней АБ//А1Б1(что мы уже доказали) и АА1//ББ1(по условию). Значит, фигура А1АББ1-параллелограмм по определению(противоположные стороны попарно параллельны). В параллелограмме противоположные стороны равны-это одно из его свойств. Тогда АБ=А1Б1(они противоположные)=8 см. ответ:8 см.
Теперь рассмотрим фигуру А1АББ1. В ней АБ//А1Б1(что мы уже доказали) и АА1//ББ1(по условию). Значит, фигура А1АББ1-параллелограмм по определению(противоположные стороны попарно параллельны). В параллелограмме противоположные стороны равны-это одно из его свойств. Тогда АБ=А1Б1(они противоположные)=8 см. ответ:8 см.
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.