Сторона меньшего основания правильной усечённой треугольной пирамиды равна 4, а боковое ребро равно 6 см и образует с плоскостью большого основания угол 45. Найти объём пирамиды. (только с фото)
Пусть трапеция имеет вершины АВСD. Угол D=45(гр.) ну он тип угол при основании. По свойству прямоугольной трапеции наименьшая боковая сторона - это сторона при прямом угле. Т.е. АВ=9. То есть и высота в трапеции равна 9. Строим высоту СН=9( только что писала почему равную 9). И рассматриваем треугольник СDH: угол CHD - прямой, угол D=45(гр.), следовательно и угол HCD=45(гр.)(180-90-45=45) Значит, треугольник СНD - равнобедренный и СН=НD=9. Найдем, чему равна боковая сторона СD. По теореме Пифагора: CD^2=81+81=162==> CD= 9 корней из 18 ( не могу вставить формулу: выглядит примерно так 9\|18' Известно, что сумма боковых сторон трапеции равна сумме оснований: тогда сумма оснований равна ==> 9+(9\|18':2)+(9\|18':2) (НD+AH+BC) А площадь трапеции равна: 1/2 суммы оснований умноженная на высоту, т.е. (НD+AH+BC)*CH= 1/2(9+9\18')*9=4,5*(9+9\|18')=4,5*9+4,5*9\|18'=40,5+40,5\|18' Может это как то преобразуется, но по-моему решается так..;)
Высота пирамиды - h = 8 * sin60 =8*√3/2=4√3 Сторона основания - а, определится через диагональ основания = 8*cos60*2=8*0,5*2=8. a = 8/√2 1) Площадь боковой поверхности S = 4s = 4(а * апофему)/2 апофема =√ [(a/2)²+h²]=√[(4/√2)²+(4√3)²=√(8+16/3). S = 2*(8/√2)*√(8+16/3) 2) Объем V = Sоснования*h/3 = a²h/3 = (8/√2)²4√3/3 = 128/3√3 3) Для определения угла между гранями выполним вертикальное сечение пирамиды. В сечении получим равнобедренный треугольник со стороной равной апофеме и основанием а. α = 2 arcsin (8/2√2)/√(8+16/3)
По свойству прямоугольной трапеции наименьшая боковая сторона - это сторона при прямом угле. Т.е. АВ=9. То есть и высота в трапеции равна 9.
Строим высоту СН=9( только что писала почему равную 9). И рассматриваем треугольник СDH: угол CHD - прямой, угол D=45(гр.), следовательно и угол HCD=45(гр.)(180-90-45=45)
Значит, треугольник СНD - равнобедренный и СН=НD=9.
Найдем, чему равна боковая сторона СD. По теореме Пифагора: CD^2=81+81=162==> CD= 9 корней из 18 ( не могу вставить формулу: выглядит примерно так 9\|18'
Известно, что сумма боковых сторон трапеции равна сумме оснований: тогда сумма оснований равна ==> 9+(9\|18':2)+(9\|18':2) (НD+AH+BC)
А площадь трапеции равна: 1/2 суммы оснований умноженная на высоту, т.е. (НD+AH+BC)*CH= 1/2(9+9\18')*9=4,5*(9+9\|18')=4,5*9+4,5*9\|18'=40,5+40,5\|18'
Может это как то преобразуется, но по-моему решается так..;)
Сторона основания - а, определится через диагональ основания = 8*cos60*2=8*0,5*2=8. a = 8/√2
1) Площадь боковой поверхности S = 4s = 4(а * апофему)/2
апофема =√ [(a/2)²+h²]=√[(4/√2)²+(4√3)²=√(8+16/3). S = 2*(8/√2)*√(8+16/3)
2) Объем V = Sоснования*h/3 = a²h/3 = (8/√2)²4√3/3 = 128/3√3
3) Для определения угла между гранями выполним вертикальное сечение пирамиды.
В сечении получим равнобедренный треугольник со стороной равной апофеме и основанием а. α = 2 arcsin (8/2√2)/√(8+16/3)