Пусть ВС-малое основание, AD-большое основание р/б трапеции. Вписанная окружность касается сторон АВ, ВС, СD, AD в точках M,N,P,Q соответственно. Т.к. трапеция р.бокая, то AB=CD. BM=BN=CN=CP=3-по свойству касательных к окружности.
AM=AQ=DQ=DP=12-по свойству касательных к окружности. Отсюда ВС=3+3=6, AD=12+12=24
Проведем высоты ВВ1 и СС1 к AD. BC=B1C1=6. AB1=(AD-B1C1)/2=9
180 см2
Объяснение:
Пусть ВС-малое основание, AD-большое основание р/б трапеции. Вписанная окружность касается сторон АВ, ВС, СD, AD в точках M,N,P,Q соответственно. Т.к. трапеция р.бокая, то AB=CD. BM=BN=CN=CP=3-по свойству касательных к окружности.
AM=AQ=DQ=DP=12-по свойству касательных к окружности. Отсюда ВС=3+3=6, AD=12+12=24
Проведем высоты ВВ1 и СС1 к AD. BC=B1C1=6. AB1=(AD-B1C1)/2=9
Тр-к ABB1-прямоугольный. по. Пифагора: BB1=sqrt(AB^2 - AB1^2)=sqrt(225-81)=12
S=1/2*(BC+AD)*BB1=1/2*(6+24)*12=180 см2
Задание 1
Угол 1 = 125 градусов, угол 2 = 55 градусов, угол 3 = 125 градусов
Задание 2
Угол 1 = 75 градусов, угол 2 = 75 градусов, угол 3 = 30 градусов
Объяснение:
Задание 1
На 1 рисунке представлены параллельные прямые
Угол 1 и угол 3 равны как накрест лежащие углы при параллельных прямых
Угол 1 и угол в 125 градусов являются соответственными
Соответственные углы равны, значит угол 1 = 125 градусов и угол 3 = 125 градусов
Угол 2 и угол 1 являются односторонними при параллельных прямых с и d с секущей а
Односторонние углы = 180 градусов
Угол 2 = 180 градусов - 125 градусов = 55 градусов
Задание 2
По рисунку видно, что образованный треугольник является равнобедренным
В равнобедренном треугольнике углы при основании равны
Значит угол 2 = углу 1
Угол 4 и угол 3 являются смежными и в сумме составляют 180 градусов
Следовательно угол 3 = 180 градусов - 150 градусов = 30 градусов
Сумма углов в треугольнике составляет 180 градусов
Угол 1 + угол 2 = 180 градусов - 30 градусов = 150 градусов
Угол 1 = 150 градусов / 2 = 75 градусов