Сторона основания правильной четырехугольной пирамиды равна 6см.Найдите объём пирамиды, если её боковая грань составляет с плоскостью основания угол 60°.
1 замкнутая кривая, все точки к-рой равно удалены от центра.
Центр окружности – это точка, равноудаленная от точек окружности
Прямая линия, соединяющая центр с любой точкой окружности или поверхности шара.
2 Хо́рда в планиметрии — отрезок, соединяющий две точки данной кривой
Хорда, проходящая через центр О, называется диаметром.
3 Окружность называется описанной около треугольника, если она проходит через все его вершины. Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров к сторонам треугольника.
4 Теорема. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон.
5 Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
1 замкнутая кривая, все точки к-рой равно удалены от центра.
Центр окружности – это точка, равноудаленная от точек окружности
Прямая линия, соединяющая центр с любой точкой окружности или поверхности шара.
2 Хо́рда в планиметрии — отрезок, соединяющий две точки данной кривой
Хорда, проходящая через центр О, называется диаметром.
3 Окружность называется описанной около треугольника, если она проходит через все его вершины. Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров к сторонам треугольника.
4 Теорема. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон.
5 Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Объяснение:
))
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.