ромб АВСД, АВ=ВС=СД=АД, КА перпендикулярна АВСД, уголС=60, ВД=4, треугольник ВСД равносторонний, уголДВС=уголВДС=(180-уголС)/2=(180-60)/2=60, ВД=ВС=СД=АВ, О пересечение диагоналей, которые в точке О делятся пополам и пересекаются под углом 90, треугольник АВО, ВО=1/2ВД=4/2=2, АВ=4, АО=корень(АВ в квадрате-ВО в квадрате)=корень(16-4)=2*корень3, АС=АО*2=2*корень3*2=4*корень3, треугольник АКС прямоугольный, КА=корень(КС вквадрате-АС в квадрате)=корень(57-48)=3, треугольник АКВ прямоугольный, КВ=корень(АВ в квадрате+КА в квадрате)=корень(16+9)=5
1. ΔАВС - равнобедренный с основанием АВ. Высота проведенная из вершины С к основанию, разбивает ΔАВС на два равных прямоугольных треугольника. tg A = h:(10:2) = h : 5 = 2√2 ⇒ h = 5 * 2√2 = 10√2 По т. Пифагора АС² = 5² + h² = 25 + (10√2)² = 225 h=15
2. ΔАВС - равнобедренный с основанием АВ. Высота проведенная из вершины С к основанию, разбивает ΔАВС на два равных прямоугольных треугольника. cos A = √77 : 2 : AC = 2/9 ⇒ AC = 2,25√77 По т. Пифагора АС² = h² - (0,5√77)² = (2,25√77)² h² = (2,25√77)² - (0,5√77)² = 370,5625 h=19,25
Высота проведенная из вершины С к основанию, разбивает ΔАВС на два равных прямоугольных треугольника.
tg A = h:(10:2) = h : 5 = 2√2 ⇒ h = 5 * 2√2 = 10√2
По т. Пифагора
АС² = 5² + h² = 25 + (10√2)² = 225
h=15
2. ΔАВС - равнобедренный с основанием АВ.
Высота проведенная из вершины С к основанию, разбивает ΔАВС на два равных прямоугольных треугольника.
cos A = √77 : 2 : AC = 2/9 ⇒ AC = 2,25√77
По т. Пифагора
АС² = h² - (0,5√77)² = (2,25√77)²
h² = (2,25√77)² - (0,5√77)² = 370,5625
h=19,25