CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB) Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом. По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно: CO=2/3 * CDOF=1/3 * AF По теореме Пифагора CF*CF=OF*OF+CO*CO Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см. Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
РЕШЕНИЕ
AF=1/2 * √(2*(AB*AB+AC*AC)-BC*BC)
CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB)
Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом.
По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно:
CO=2/3 * CDOF=1/3 * AF
По теореме Пифагора CF*CF=OF*OF+CO*CO
Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см.
Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
Для решения задачи необходимо знать свойства углов параллелограмма:
- противоположные углы равны;
- сумма смежных или соседних углов равна 180°;
- сумма углов параллелограмма равна 360°.
В нашем случае углы А и С - противоположные;
Угол В - смежный с углами А и С.
Возможны разные варианты решения:
1 вариант.
Найдем градусную меру одного из углов А и С, потом угол В, как смежный.
180° - 100° / 2 = 180° - 50° = 130°
2 вариант.
Найдем сумму угла В и ему противоположному и разделим на 2.
(360° - 100°) / 2 = 130°.
ответ: угол В равен 130°.
Объяснение: