Сторона основания правильной треугольной призмы равна 2, а высота призмы равна 3. Через сторону основания и противоположную вершину другого основания проведено сечение. Найдите:
а) площадь боковой поверхности призмы;
б) высоту основания призмы;
в) угол между плоскостью основания и сечения.
2 см
Объяснение:
Дано:
треугольник АВС,
высота, проведенная к боковой стороне,
угол BA= 120 градусов,
основание = 4 см.
Найти длину высоты - ?
1) Рассмотрим треугольник АВС. Сумма градусных мер углов треугольника равна 180 градусов, а у на дан равнобедренный треугольник. У него два угла при основании равны.
Тогда:
угол А = углу В = (180 - угол А)/2;
угол А = углу В = (180 - 120)/2;
угол А = углу В = 60/2;
угол А = углу В = 30 градусов;
2) Рассмотрим прямоугольный треугольник
= 1/2 * АС (так как катет лежащий напротив угла в 30 градусов равен половине гипотенузы);
= 1/2 * 4;
= 2 сантиметра.
ответ: 2 сантиметра.
2 см
Объяснение:
Дано:
треугольник АВС,
высота, проведенная к боковой стороне,
угол BA= 120 градусов,
основание = 4 см.
Найти длину высоты - ?
1) Рассмотрим треугольник АВС. Сумма градусных мер углов треугольника равна 180 градусов, а у на дан равнобедренный треугольник. У него два угла при основании равны.
Тогда:
угол А = углу В = (180 - угол А)/2;
угол А = углу В = (180 - 120)/2;
угол А = углу В = 60/2;
угол А = углу В = 30 градусов;
2) Рассмотрим прямоугольный треугольник
= 1/2 * АС (так как катет лежащий напротив угла в 30 градусов равен половине гипотенузы);
= 1/2 * 4;
= 2 сантиметра.
ответ: 2 сантиметра.