Сторона основи правильної чотирикутної піраміди MABCD, зображеної на мал. 7.12 дорівнює 2. Чому дорівнює модуль вектора AM + МС А Б B 212 2 2 с с D 7.12
Дано: АВСДА₁В₁С₁Д₁ - (в условии не указано что это) ВД₁ - диагональ АВ=4, ВС= 5√3, АА₁=3 Найти: ∠А₁ВД₁ -?
1) Пусть АВСДА₁В₁С₁Д₁ - прямоугольный параллелепипед, тогда вычислим по формуле ВД₁²=АВ²+ВС²+АА₁²=4²+(5√3)²+3²=100, ВД₁=√100=10 2) Так как АВСДА₁В₁С₁Д₁ прямоугольный параллелепипед, то в Δ А₁В ∠А=90°, тогда находим по теореме Пифагора А₁В²=АА₁²+АВ²=25, А₁В=√25=5 а также ΔА₁Д₁В - прямоугольный,то cos острого угла равен отношению катета, выходящего из этого угла, к гипотенузе; находим cos ∠А₁ВД₁=А₁В/Д₁В=5/10=1/2=60°
ВД₁ - диагональ
АВ=4, ВС= 5√3, АА₁=3
Найти: ∠А₁ВД₁ -?
1) Пусть АВСДА₁В₁С₁Д₁ - прямоугольный параллелепипед, тогда вычислим по формуле ВД₁²=АВ²+ВС²+АА₁²=4²+(5√3)²+3²=100, ВД₁=√100=10
2) Так как АВСДА₁В₁С₁Д₁ прямоугольный параллелепипед, то в Δ А₁В ∠А=90°, тогда находим по теореме Пифагора А₁В²=АА₁²+АВ²=25, А₁В=√25=5
а также ΔА₁Д₁В - прямоугольный,то cos острого угла равен отношению катета, выходящего из этого угла, к гипотенузе;
находим cos ∠А₁ВД₁=А₁В/Д₁В=5/10=1/2=60°
ответ: ∠А₁ВД₁=60°
В треугольнике против большей стороны лежит больший угол.
Доказательство:
Пусть в ΔАВС АВ > ВС. Докажем, что ∠С > ∠А.
Отложим на стороне АВ отрезок ВК = ВС. Так как АВ > ВС, то точка К будет лежать между точками А и В, тогда угол 1 будет частью угла С:
∠1 < ∠С.
∠2 - внешний для ΔАСК, а внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда ∠2 = ∠А + ∠АСК, т.е.
∠2 > ∠А.
И еще ∠1 = ∠2 как углы при основании равнобедренного треугольника ВСК. Получаем:
∠А < ∠2 < ∠C, значит
∠А < ∠С
Обратная теорема: В треугольнике против большего угла лежит большая сторона.
Доказательство:
Пусть в треугольнике АВС ∠С > ∠A. Докажем, что АВ > ВС.
Предположим, что АВ < ВС. Тогда по доказанной теореме ∠С должен быть меньше ∠А. Это противоречит условию. Значит предположение неверно, АВ > ВС.