Обьем пирамиды равен длина боковой грани умножить на длина боковой грани умножить на высота пирамиды и делить это все на 2. найдем высоту, т к угол между апофемой (высотой боковой грани) и основанием равен 45 градусов, то синус 45 градусов равен н/10 (где н - высота) н=((корень из 2)/2)*10=5 корней из 2 теперь найдем половину основания: тангенс 45 градусов=высота/х (где х - половина основания) (тангенс 45 градусов равен 1) х= (5 корней из 2)/1 значит основание будет равно (5 корней из 2)*2=10 корней из 2 теперь находим обьем пирамиды ((10 корней из 2)*(10 корней из 2)*(5 корней из 2))/2= 500 корней из 2 (кубических сантиметров) ответ: 500 корней из 2 (см³)
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.