1) теорема о свойствах равнобедренного треугольника. в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, . доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника. как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с. следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника
Шестиугольник правильный => у него все углы равны. Из свойств правильного шестиугольника: сторона равна радиусу описанной окружности a=R=6 см; каждый угол правильного шестиугольника равен 120°. Мысленно построив точку О и проведя из вершин шестиугольника отрезки мы получим 6 одинаковых равносторонних треугольников с углами 60°.
Для нахождения радиуса вписанной окружности используем формулу:
r = R cos 180/n
где n - количество сторон.
r = 6 cos 30 = 3√3
Находим длину вписанной окружности:
2Пr = 6П√3
Из рисунка очевидно, что требуемая длина дуги KLM составляет ровно 1/3 от общей дуги, тогда:
Шестиугольник правильный => у него все углы равны. Из свойств правильного шестиугольника: сторона равна радиусу описанной окружности a=R=6 см; каждый угол правильного шестиугольника равен 120°. Мысленно построив точку О и проведя из вершин шестиугольника отрезки мы получим 6 одинаковых равносторонних треугольников с углами 60°.
Для нахождения радиуса вписанной окружности используем формулу:
r = R cos 180/n
где n - количество сторон.
r = 6 cos 30 = 3√3
Находим длину вписанной окружности:
2Пr = 6П√3
Из рисунка очевидно, что требуемая длина дуги KLM составляет ровно 1/3 от общей дуги, тогда:
KLM = 6П√3 : 3 = 2П√3
Объяснение: