Если достаточно координат концов лучей звезды, то такая задача аналогична задаче поворота отрезка вокруг точки на заданный угол. Для пятиконечной звезды угол равен 72 градуса. Поместим центр окружности, в которую вписана звезда, в начало координат. Пусть обозначим её точкой А (0;0). Верхняя вершина звезды - точка В (0; R) - R задаётся координатой "у" точки В. Далее по формулам (против часовой стрелки с плюсом, против - с минусом) указываем угол поворота. X = x1+(x2-x1)*cos(A)-(y2-y1)*sin(A). Y = y1+(x2-x1)*sin(A)+(y2-y1)*cos(A).
Объяснение:
а)
Прямоугольная трапеция.
LM=KB=1см
МА=LA-LM=2-1=1см.
LK=MB=3см
∆MBA- прямоугольный треугольник.
По теореме Пифагора
АВ=√(МВ²+МА²)=√(3²+1²)=√(9+1)=√10 см
ответ: АВ=√10см
б)
Достроим прямоугольник
CD=AK=2см
CB=СD+DB=2+2=4см.
СА=DK=2см.
∆АСВ- прямоугольный треугольник
По теореме Пифагора
АВ=√(АС²+СВ²)=√(2²+4²)=√(4+16)=√20=
=2√5 см
ответ: АВ=2√5 см.
в)
∆АDC- прямоугольный треугольник
По теореме Пифагора
АС=√(АD²+DC²)=√(3²+7²)=√(9+49)=
=√58 см
∆АСВ- прямоугольный треугольник
По теореме Пифагора
АВ=√(АС²-СВ²)=√(58-5²)=√(58-25)=√33см
ответ: АВ=√33см
Для пятиконечной звезды угол равен 72 градуса.
Поместим центр окружности, в которую вписана звезда, в начало координат.
Пусть обозначим её точкой А (0;0).
Верхняя вершина звезды - точка В (0; R) - R задаётся координатой "у" точки В.
Далее по формулам (против часовой стрелки с плюсом, против - с минусом) указываем угол поворота.
X = x1+(x2-x1)*cos(A)-(y2-y1)*sin(A).
Y = y1+(x2-x1)*sin(A)+(y2-y1)*cos(A).
Для примера в приложении радиус дан 5.