Сторона рівностороннього трикутника дорівнює 5 см. Точка А рівновіддалена від кожної вершини трикутника на 13см. Обчислити відстань від точки А до площини трикутника.
Если диагонали трапеции являются биссектрисами, то точка пересечения диагоналей - центр вписанной окружности. А если в 4-ник можно вписать окружность, то у него суммы длин противоположных сторон равны.
АВСД - равноб. трапеция. АВ = СД = с. Основание ВС = b = 3. Основание АД = а. Тогда имеем систему:
2с = а + 3,
2с + а + 3 = 42, а = 18, с = 10,5
Для нахождения площади необходимо знать высоту.
Проведем высоты ВК и СМ (обозначим h). Тогда из равенства тр-ов АВК и СМД получим: АК = МД = (a-b)/2 = 7,5
х - высота треугольника
1,5х - основание
0,75х - половина основания
Тогда по теореме Пифагора:
х^2 + (0.75x)^2 = 50^2
1,5625x^2 = 2500
x^2 = 1600
x = 40 (см) - высота треугольника (х=-40 не удовлетвор.условиям задачи)
40*1,5=60 (см) - основание треугольника
60:2=30 (см) - средняя линия
S = 0,5ah = 0,5*60*40 = 1200 (кв см)
Найдём полупериметр
р = (50+50+60)/2 = 80 (см)
Воспользуемся формулами площади через радиусы вписанной и описанной окружности:
S = pr, r = S/p = 1200/80 = 15 (см)
S = abc/(4R), R = abc/(4S) = 50*50*60/(4*1200) = 31,25 (см)
Если диагонали трапеции являются биссектрисами, то точка пересечения диагоналей - центр вписанной окружности. А если в 4-ник можно вписать окружность, то у него суммы длин противоположных сторон равны.
АВСД - равноб. трапеция. АВ = СД = с. Основание ВС = b = 3. Основание АД = а. Тогда имеем систему:
2с = а + 3,
2с + а + 3 = 42, а = 18, с = 10,5
Для нахождения площади необходимо знать высоту.
Проведем высоты ВК и СМ (обозначим h). Тогда из равенства тр-ов АВК и СМД получим: АК = МД = (a-b)/2 = 7,5
Из пр.тр. АВК найдем высоту по теореме Пифагора:
h = кор( 10,5^2 - 7,5^2) = кор54 = 3кор6
Тогда площадь трапеции:
S = (a+b)*h /2 = (63кор6)/2 см^2.