Сторона равностороннего треугольника AC длиной 24 см является диаметром окружности. Окружность пересекается с двумя другими сторонами в точках D и E. Определи длину DE.
На сторонах угла CAD отмечены точки В и Е так, что точка Е лежит на отрезке АС, а точка В - на отрезке AD, причем АС = AD и АВ = АЕ. Найдите величину угла CBD, если угол AED = 95 градусов.

Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ

gidayatova2000
16.12.2013
Геометрия
5 - 9 классы
ответ дан • проверенный экспертом
На сторонах угла CAD отмечены точки В и Е так, что точка Е лежит на отрезке АС, а точка В - на отрезке AD, причем АС = AD и АВ = АЕ. Найдите величину угла CBD, если угол AED = 95 градусов.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,1/5
124

troshkina99
середнячок
8 ответов
2.3 тыс. пользователей, получивших
1. Рассмотрим треугольники ACB, AED:
а) АС = AD
б) AE = AB
в) угол А - общий следовательно:
треуг. ACB = треуг. AED следовательно:
угол AED = углу ABC
2) угол AED = 95 градусов - по условию, следовательно угол ABC = 95 градусов.
3) углы ABC, CBD - смежные следовательно их сумма равна 180 градусам, следовательно угол CBD = 180 - 95 = 85 градусов.
R=4см
Sосн=16π см²
Sбок.=16π√2см²
Sпол.=16π+16π√2 см²
Объяснение:
∆SBA- равнобедренный <SBA=<SAB=45°
∆SOA- прямоугольный, равнобедренный.
<SOA=<ASO=45°.
SO=OA=R=4 см
Sосн=πR²=π*4²=16π см² площадь основания конуса.
∆SOA- прямоугольный.
SA- гипотенуза
SO и ОА - катеты.
По теореме Пифагора найдем
SA²=SO²+OA²=4²+4²=16+16=32
SA=√32=4√2 см апофема
l=SA=4√2 см
Sбок=πRl, где l- апофема.
Sбок=π*4*4√2=16π√2 см² площадь боковой поверхности конуса.
Sсеч=SO*BA/2=SO*2*OA/2=SO*OA=4*4= =16 см² площадь осевого сечения.
Sпол=Sосн+Sбок=16π+16π√2 см² площадь полной поверхности конуса.