В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lloginova58
lloginova58
13.10.2021 20:26 •  Геометрия

Сторона ромба ровна 4корня5, а одна из диагоналей - 16см. найдите вторую диогональ ромба.

Показать ответ
Ответ:
MarryDied
MarryDied
15.08.2020 19:49

НА ПОУЧИ, НЕУЧ!

Определение. Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).

Коллинеарные вектора

рис. 1

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

a = n · b

Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение

a × b =  

i j k

ax ay az

bx by bz

 = i (aybz - azby) - j (axbz - azbx) + k (axby - aybx) =

= i (aynaz - aznay) - j (axnaz - aznax) + k (axnay - aynax) = 0i + 0j + 0k = 0

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Пример 1. Какие из векторов a = {1; 2}, b = {4; 8}, c = {5; 9} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

ax  =  ay .

bx by

Значит:

Вектора a и b коллинеарны т.к.   1  =  2 .

4 8

Вектора a и с не коллинеарны т.к.   1  ≠  2 .

5 9

Вектора с и b не коллинеарны т.к.   5  ≠  9 .

4 8

Пример 2. Доказать что вектора a = {0; 3} и b = {0; 6} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2

ay 3

Найдем значение na:

na = {2 · 0; 2 · 3} = {0; 6}

Так как b = na, то вектора a и b коллинеарны.

Пример 3. найти значение параметра n при котором вектора a = {3; 2} и b = {9; n} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax  =  ay .

bx by

Значит:

3  =  2 .

9 n

Решим это уравнение:

n =  2 · 9  = 6

3

ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Пример 4. Какие из векторов a = {1; 2; 3}, b = {4; 8; 12}, c = {5; 10; 12} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax  =  ay  =  az .

bx by bz

Значит:

Вектора a и b коллинеарны т.к.   1 4  =   2 8  =   3 12  

Вектора a и с не коллинеарны т.к.    1 5  =   2 10  ≠   3 12  

Вектора с и b не коллинеарны т.к.   5 4  =   10 8  ≠   12 12  

Пример 5. Доказать что вектора a = {0; 3; 1} и b = {0; 6; 2} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2

ay 3

Найдем значение na:

na = {2 · 0; 2 · 3; 2 · 1} = {0; 6; 2}

Так как b = na, то вектора a и b коллинеарны.

Пример 6. найти значение параметров n и m при которых вектора a = {3; 2; m} и b = {9; n; 12} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax  =  ay  =  az .

bx by bz

Значит:

3  =  2  =  m

9 n 12

Из этого соотношения получим два уравнения:

3  =  2

9 n

3  =  m

9 12

Решим эти уравнения:

n =  2 · 9  = 6

3

m =  3 · 12  = 4

9

ответ: вектора a и b коллинеарны при n = 6 и m = 4.

0,0(0 оценок)
Ответ:
avgustreykh14
avgustreykh14
31.05.2022 18:33

Відповідь:

1757 жылдан Глазгодағы университетте механик болып жұмыс істеді. Онда ол Д.Папен (1647 – 1714) қазанын пайдаланып қаныққан бу температурасының қысымға тәуелділігін зерттеді. 1763 – 64 жылы Т.Ньюкоменнің (1663 – 1729) бу машинасының моделін кемелдендіре отырып, бу шығынын конденсаторды цилиндрден оқшаулау арқылы азайтуға болатындығын дәлелдеді. Осы идеяны басшылыққа ала отырып 1765 жылы тәжірибелік, ал 1768 жылы ең алғашқы бу машинасын құрастырды. Бұл бу машинасы Ньюкоменнің машиналарына қарағанда едәуір тиімді болды.

Пояснення:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота