Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
9 см
Объяснение:
Задание
Хорда CD длиной 13 см пересекает хорду АВ в точке N, BN=3 см, AN=12 см, CN меньше ND. Найти длину ND
Решение
Теорема: хорды точкой пересечения делятся на отрезки, произведения которых равны.
BN · AN = 3 · 12 = 36
Пусть CN = х₁ , ND = х₂.
Составим систему уравнений и найдём ND:
х₁ + х₂ = 13 (1)
х₁ · х₂ = 36 (2)
Из уравнения (1) выразим х₂ и подставим в уравнение (2):
х₂ = 13 - х₁
х₁ · (13 - х₁) = 36
13х₁ - х₁² - 36 = 0
х₁² - 13х₁ + 36 = 0
х₁ = 6,5 - √(6,5²-36) = 6,5 - 2,5 = 4
СN = 4 см
х₂ = 6,5 + √(6,5²-36) = 6,5 + 2,5 = 9
ND = 9 см
ответ: ND = 9 см
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.