Сторона трикутника дорівнює 6коренів з 3 а прилеглі до неї кути дорівнюють 50 і 70 градусів. Знайдіть довжини дуг, на які поділяють описане коло трикутника його вершин
Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны. ЕА перпендикулярна плоскости квадрата, ⇒ плоскость АЕС перпендикулярна плоскости квадрата. АМ пересекает плоскость АВСD в точке, не принадлежащей BD. Прямые АМ и BD лежат в разных плоскостях, не параллельны и не пересекаются. Эти прямые - скрещивающиеся. Чтобы найти угол между скрещивающимися прямыми, нужно провести прямую, параллельную одной них так, чтобы она пересекала вторую прямую. При этом получаются пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися прямыми. Диагонали квадрата пересекаются под прямым углом. Проведем в плоскости АЕС через точку пересечения диагоналей О наклонную ОН параллельно АМ. Проекция ОН принадлежит АС и перпендикулярна ВD. По т. о 3-х перпендикулярах ВD перпендикулярна ОН. Следовательно, ВD перпендикулярна АМ. Угол между ВD и АМ равен 90°.
Равнобедренного может? Если да , то вот . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
ЕА перпендикулярна плоскости квадрата, ⇒
плоскость АЕС перпендикулярна плоскости квадрата.
АМ пересекает плоскость АВСD в точке, не принадлежащей BD. Прямые АМ и BD лежат в разных плоскостях, не параллельны и не пересекаются. Эти прямые - скрещивающиеся.
Чтобы найти угол между скрещивающимися прямыми, нужно провести прямую, параллельную одной них так, чтобы она пересекала вторую прямую. При этом получаются пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися прямыми.
Диагонали квадрата пересекаются под прямым углом.
Проведем в плоскости АЕС через точку пересечения диагоналей О наклонную ОН параллельно АМ. Проекция ОН принадлежит АС и перпендикулярна ВD. По т. о 3-х перпендикулярах ВD перпендикулярна ОН. Следовательно, ВD перпендикулярна АМ.
Угол между ВD и АМ равен 90°.
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.