AC находится по теореме Пифагора и равна √136 1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B. Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм. По свойству диагоналей параллелограма AK²+BC² = 2*(AC²+AB²) AK²+(√136)²=2*((√136)²+20²) AK²=2*(136+400)-136 AK²=936 AK = 6√26 AA1 = AK/2 = (6√26)/2=3√26 AA1=BB1 = 3√26
1)угол мnk=78:2=39 градусов-по св. вписанного угла.
Угол nok=180-78=102°-по св смежных углов
Х=180-102-39=39°
ответ:39°
2)ao=ob=r, значит этот треугольник равнобедренный и углы при основании равны по 60 градусов, а значит тругольник равносторонний и х=8
ответ:8
3)ol=om=r=32
По т пифагора х=примерно 45(но это не точно)
4)дуга kl=360-143-77=140°
Х=140:2=70°-по св вписанного угла
5)дуга mn=40*2=80°
Дуга sn=180-80=100°
ответ 100°
6)180-124=56°
Х=56:2=28°
ответ 28°
7)дуга mq=25*2=50°
Х=180-50=130°
ответ 130°
8)360-112-46=202°
Х=202:2=101°
ответ 101°
1 рисунок.
На 2 рисунке. На луче AA1 отложим отрезок A1K, A1K=AA1. Соединим точку K с точками C и B.
Рассмотрим четырехугольник ACKB. CA1=BA1 (так как AA1 — медиана треугольника ABC); AA1=KA1 (по построению).Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ACKB — параллелограмм.
По свойству диагоналей параллелограма
AK²+BC² = 2*(AC²+AB²)
AK²+(√136)²=2*((√136)²+20²)
AK²=2*(136+400)-136
AK²=936
AK = 6√26
AA1 = AK/2 = (6√26)/2=3√26
AA1=BB1 = 3√26