Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4 и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.
ответ: 6 целых 4/7
Объяснение: рассмотрим ∆АВС. В нём известны 3 стороны, и мы можем найти используя теорему косинусов угол А:
cosA=(AB²+AC²-BC²)/2×AB×AC=
=(8²+4²-6²)/2×8×4=(64+16-36)/64=64/64=1
cosA=1
Обозначим пропорции для разных сторон как: АМ=2х, 5х, а АВ как 3у, 4у
АМ=5х; АР=3х; ВР=4х
АС=4=2х.
2х=4
х=4÷2=2; х=2
АМ=5×2=10; АМ=10
Составим уравнение по стороне АВ:
3у+4у=8
7у=8
у=8/7
АР=3у=3×8/7=24/7;. АР=24/7
Найдём РМ, используя теорему косинусов: РМ²=АР²+АМ²-2×АР×АМ×cosA=
=(24/7)²+10²-2×24/7×1=
(576/49)+100-(480/7)= здесь находим общий знаменатель и получаем:
(576/49)+(4900/49)-(3360/49)=
=2116/49; РМ=√2116/49=46/7
или 6 целых 4/7