Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
См. рисунок. решать задачу можно разными например, вот этими двумя. 1) сделаем достроение BD параллельно МС. Отсюда углы МСВ, СВD и СDB равны, значит, СВ=СD по т. Фалеса если АМ/МВ=3/5 тогда АС/СD=3/5 т.е имеем систему a/b=3/5 и a+b=72 отсюда a=27 b=45 2)рассмотрим треугольники АСМ и МСВ АМ/sin(ACM)=AC/sin(AMC) MB/sin(MCB)=CB/sin(BMC) т.к углы АСМ и МСВ равны, а угол АМС=180-ВМС, тогда sin(ACM)=sin(MCB) и sin(AMC)=sin(BMC) отсюда АС/СВ=АМ/МВ=3/5 АС+СВ=72 пришли опять к той же системе. задача решена
решать задачу можно разными например, вот этими двумя.
1) сделаем достроение BD параллельно МС. Отсюда углы МСВ, СВD и СDB равны, значит, СВ=СD по т. Фалеса если АМ/МВ=3/5 тогда АС/СD=3/5 т.е имеем систему a/b=3/5 и a+b=72 отсюда a=27 b=45
2)рассмотрим треугольники АСМ и МСВ
АМ/sin(ACM)=AC/sin(AMC) MB/sin(MCB)=CB/sin(BMC)
т.к углы АСМ и МСВ равны, а угол АМС=180-ВМС, тогда sin(ACM)=sin(MCB) и sin(AMC)=sin(BMC) отсюда АС/СВ=АМ/МВ=3/5 АС+СВ=72 пришли опять к той же системе.
задача решена