Сторони прямокутника ABCD дорівнюють 56 см і 8 см. Точки A1, B1,C1, D1 – середини відрізків OA, OB, OC і OD відповідно, де O – точка перетину діагоналей прямокутника. Обчисліть периметр чотирикутника A1 B1 C1 D1.
1. конус — тело, полученное объединением всех лучей, исходящих из вершины конуса, и проходящих через плоскую поверхность.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.
формула площади полной поверхности конуса:
s = πr^2 + πrl = π r(r+l)
где s - площадь, r - радиус основания конуса, l - образующая конуса.
2. обозначим: о - центр шара, а - конец радиуса, в - конец другого радиуса, проведенного перпендикулярно к оа. ав- диаметр сечения. из равнобедренного прямоугольного треугольника найдем ав (любым известным способом, например, по теореме пифагора) ав = 8корней из 2, т. е. диаметр сечения 8 корней из 2, следовательно, радиус сечения 4 корня из 2. площадь сечения 32 пи.
3. площадь осевого сечения цилиндра равна площади диагонального сечения куба, которое в свою очередь, равно произведению ребра куба на величину диагонали грани куба.Круг — часть плоскости, лежащая внутри окружности.
R - радиус круга
D = 2R - диаметр круга
Р = 2πR - периметр круга (длина окружности)
S = π R² - площадь круга
выведем формулу для площади S круга.
Пусть у нас есть правильный n -угольник, со стороной а, в который вписана окружность радиуса r и вокруг которого описана окружность радиуса R.
n-угольник разбит на n треугольников площадью S₁ = 0.5 а · r
Площадь n-угольника равна
Sn = n · 0.5 a · r = 0,5 Р · r (здесь Р - периметр многоугольника)
При n → ∞ получаем r → R, P → C = 2πR и Sn → S
S = 0.5 · 2πR · R
S = πR² - площадь круга