АВСД - параллелограмм , ДР - биссектриса, ∠С=45° ,
ДР пересекает АВ в точке Р , а ВС в точке М .
АР=10 см , ВР=2 см ⇒ АВ=10-2=8 см , СД=АВ=8 см как противоположные стороны параллелограмма .
ДР - биссектриса ⇒ ∠СДР=∠АДР .
∠АДР=∠СМД как накрест лежащие углы при АД || ВС и секущей ДР .
В ΔСМД два угла равны ⇒ ΔСМД - равнобедренный и СМ=СД=8 см ∠СМД=(180°-45°):2=67,5°
∠ВМР=∠СМД=67,5° как вертикальные .
В ΔВМР угол ∠МВР=45° , так как ∠МВР=∠МСД=45° как накрест лежащие углы при АР || СД и секущей ВС .
Но тогда в ΔВМР: ∠ВРМ=180°-45°-67,5°=67,5° , то есть ΔВМР есть два равных угла: ∠ВМР=∠ВРМ=67,5° , тогда этот треугольник равнобедрен-ный и ВМ=ВР=2 см .
ответ: Р=36 см .
АВСД - параллелограмм , ДР - биссектриса, ∠С=45° ,
ДР пересекает АВ в точке Р , а ВС в точке М .
АР=10 см , ВР=2 см ⇒ АВ=10-2=8 см , СД=АВ=8 см как противоположные стороны параллелограмма .
ДР - биссектриса ⇒ ∠СДР=∠АДР .
∠АДР=∠СМД как накрест лежащие углы при АД || ВС и секущей ДР .
В ΔСМД два угла равны ⇒ ΔСМД - равнобедренный и СМ=СД=8 см ∠СМД=(180°-45°):2=67,5°
∠ВМР=∠СМД=67,5° как вертикальные .
В ΔВМР угол ∠МВР=45° , так как ∠МВР=∠МСД=45° как накрест лежащие углы при АР || СД и секущей ВС .
Но тогда в ΔВМР: ∠ВРМ=180°-45°-67,5°=67,5° , то есть ΔВМР есть два равных угла: ∠ВМР=∠ВРМ=67,5° , тогда этот треугольник равнобедрен-ный и ВМ=ВР=2 см .
Тогда ВС=СМ+ВМ=8 +2 =10 см , АД=ВС=10 см
Периметр Р=10+10+8+8=36 см .
РЕШЕНИЕ
сделаем построение по условию
AB = BC , так как ABCD -квадрат
Точка M делит сторону BC в отношении 1:2 -можно считать ,
что сторона ВС состоит из 3-х равных частей.
Точка E делит сторону AB в отношении 1:3 - можно считать ,
что сторона АВ состоит из 4-х равных частей.
Прямая CE пересекает стороны AM и MD треугольника AMD в точках К и L соответственно.
Дополнительное построение :
обозначим точку М1 - середина отрезка MC , тогда BM=MM1=M1C
проведем через точки М, М1 прямые m, m1 параллельные прямой CE
по теореме Фалеса :
параллельные прямые m,m1,CE отсекают на сторонах угла <EBC
пропорциональные отрезки
на стороне ВС : BM=MM1=M1C , значит на стороне BE тоже три равные части
обозначим для так как сторона АВ состоит из 4-х равных частей, то любая часть может быть
представлена в виде 3х , тогда BE=3x, тогда ЕА=9х, тогда отношение 1 : 3 = 3х : 9х = 3 : 9
рассмотрим угол <BAM
снова теорема Фалеса, снова параллельные прямые m,m1,CE , снова
пропорциональные отрезки на сторонах угла
MK : KA = 2x : 9x = 2 : 9 <это сторона АМ треугольника AMD
Дополнительное построение :
проведем прямую DM до пересечения с прямой АВ - точка Р
проведем прямую DN параллельную прямой CE
прямая DN отсекает на прямой АВ отрезок AN
CE || DN , EN || CD
NECD - параллелограмм , так как противоположные стороны попарно параллельны
следовательно BE=AN , тогда BE : EN = 1 : 4
т. е. отрезок BN состоит из 5-и равных частей.
тогда BE=3x, тогда ЕN=12х, тогда отношение 1 : 4 = 3х : 12х = 3 : 12
рассмотрим угол <NPD
снова теорема Фалеса, снова параллельные прямые m,m1,CE,DN , снова
пропорциональные отрезки на сторонах угла
ML : LD = 2x : 12x = 2 : 12 = 1 : 6 <это сторона МD треугольника AMD
ОТВЕТ
для стороны АМ отношение 2 : 9
для стороны МD отношение 1 : 6
Подробнее - на -
Объяснение: