Найдите угол между диагональю AC¹ прямоугольного параллелепипеда ABCDA₁B₁C₁D₁ и прямой BC, если AB=1, BC=3 и AA₁=корень из 2. ----------- Чтобы найти угол между скрещивающимися прямыми, нужно провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся прямые, которые пересекутся под искомым углом, т.е. угол между ними будет равен углу между исходными скрещивающимися. Прямая, параллельная ВС, в параллелепипеде уже есть. Это ребро АД. Оно пересекает АС₁ и образует с ним угол ДАС₁, который равен искомому. Синус этого угла равен отношению ДС₁:АС₁ ДС₁- диагональ прямоугольника СДД1С₁ и является гипотенузой прямоугольного треугольника ДСС₁ По т. Пифагора ДС1=√(СД²+ДС₁²)=√(1+2)=√3 Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. АС₁²=АВ²+ВС²+АА₁²=1+9+2=12 АС₁=2√3 sin ∠ДАС₁= ДС₁:АС₁=(√3):2√3=1/2. Это синус угла, равного 30° ответ: Искомый угол равен 30°
середины сторон прямоугольника являются вершинами ромба.
В прямоугольнике все углы прямые, противоположные стороны равны и параллельны, а диагонали равны и точкой пересечения делятся пополам.
Пусть данный прямоугольник АВСD, точки К, М, Н, Т - соответственно середины АВ, ВС, СD, DА.
Соединим последовательно точки К, М, Н и Т
Треугольники КАТ, КВМ, МСН и НDТ прямоугольные, в каждом один катет равен половине меньшей стороны, другой - половине большей стороны. Следовательно, эти треугольники равны, отсюда равны их гипотенузы: КМ=МН=НТ=ТК.
КМНТ - четырехугольник, все стороны которого равны (признак ромба).
Кроме того, диагонали КН║ВС и МТ║АВ.
В прямоугольнике стороны пересекаются под прямым углом, следовательно, параллельные им диагонали КН и МТ тоже пересекаются под прямым углом - признак ромба.
Четырехугольник КМНТ - ромб, и его вершинами являются середины сторон прямоугольника, что и требовалось доказать.
------------------
б)
середины сторон ромба являются вершинами прямоугольника.
Пусть дан ромб АВСD, точки КМНТ - середины его сторон. Соединим их последовательно.
Диагонали ромба АС и ВD пересекаются в точке О под прямым углом и каждая делит ромб на два равных треугольника. АК=КВ, ВМ=МС, СН=НD и DТ=ТА. ⇒
КМ и ТН - средние линии треугольников АВС и СDТ и параллельны диагонали АС ромба.
КМ=ТН
Аналогично ТК и МН - средние линии треугольников АВД и СВD и параллельны диагонали ВD ромба.
КТ=МН.
Стороны четырехугольника ТКМН параллельны и равны - КМНТ - параллелограмм.
Диагонали ромба точкой их пересечения делятся пополам и, пересекаясь, делят четырехугольник ТКМН на 4 равных параллелограмма, углы которых при точке пересечения диагоналей ромба О прямые. ⇒
Углы К, М, Н и Т этих четырех параллелограммов, противоположны углам при О и по свойству углов параллелограмма равны им. Следовательно, четырехугольник ТКМН - параллелограмм, все гулы которого - прямые.
-----------
Чтобы найти угол между скрещивающимися прямыми, нужно провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся прямые, которые пересекутся под искомым углом, т.е. угол между ними будет равен углу между исходными скрещивающимися.
Прямая, параллельная ВС, в параллелепипеде уже есть. Это ребро АД. Оно пересекает АС₁ и образует с ним угол ДАС₁, который равен искомому.
Синус этого угла равен отношению ДС₁:АС₁
ДС₁- диагональ прямоугольника СДД1С₁ и является гипотенузой прямоугольного треугольника ДСС₁
По т. Пифагора ДС1=√(СД²+ДС₁²)=√(1+2)=√3
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
АС₁²=АВ²+ВС²+АА₁²=1+9+2=12
АС₁=2√3
sin ∠ДАС₁= ДС₁:АС₁=(√3):2√3=1/2. Это синус угла, равного 30°
ответ: Искомый угол равен 30°
Докажите, что:
а)
середины сторон прямоугольника являются вершинами ромба.
В прямоугольнике все углы прямые, противоположные стороны равны и параллельны, а диагонали равны и точкой пересечения делятся пополам.
Пусть данный прямоугольник АВСD, точки К, М, Н, Т - соответственно середины АВ, ВС, СD, DА.
Соединим последовательно точки К, М, Н и Т
Треугольники КАТ, КВМ, МСН и НDТ прямоугольные, в каждом один катет равен половине меньшей стороны, другой - половине большей стороны. Следовательно, эти треугольники равны, отсюда равны их гипотенузы: КМ=МН=НТ=ТК.
КМНТ - четырехугольник, все стороны которого равны (признак ромба).
Кроме того, диагонали КН║ВС и МТ║АВ.
В прямоугольнике стороны пересекаются под прямым углом, следовательно, параллельные им диагонали КН и МТ тоже пересекаются под прямым углом - признак ромба.
Четырехугольник КМНТ - ромб, и его вершинами являются середины сторон прямоугольника, что и требовалось доказать.
------------------
б)
середины сторон ромба являются вершинами прямоугольника.
Пусть дан ромб АВСD, точки КМНТ - середины его сторон. Соединим их последовательно.
Диагонали ромба АС и ВD пересекаются в точке О под прямым углом и каждая делит ромб на два равных треугольника. АК=КВ, ВМ=МС, СН=НD и DТ=ТА. ⇒
КМ и ТН - средние линии треугольников АВС и СDТ и параллельны диагонали АС ромба.
КМ=ТН
Аналогично ТК и МН - средние линии треугольников АВД и СВD и параллельны диагонали ВD ромба.
КТ=МН.
Стороны четырехугольника ТКМН параллельны и равны - КМНТ - параллелограмм.
Диагонали ромба точкой их пересечения делятся пополам и, пересекаясь, делят четырехугольник ТКМН на 4 равных параллелограмма, углы которых при точке пересечения диагоналей ромба О прямые. ⇒
Углы К, М, Н и Т этих четырех параллелограммов, противоположны углам при О и по свойству углов параллелограмма равны им. Следовательно, четырехугольник ТКМН - параллелограмм, все гулы которого - прямые.
ТКМН - прямоугольник, что и требовалось доказать.