В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
tata535268
tata535268
01.09.2020 16:11 •  Геометрия

Сторони прямокутника відносять одна до одної як 1 : 5, а площа прямокутника дорівнює 500 см2. Знайдіть периметр даного прямокутника. (у відповіді запишіть тільки число)

Показать ответ
Ответ:
alah200
alah200
01.05.2020 02:30

Дано:  ΔABC : AB=BC; BH⊥AC; BO=OH

Найти:  S_{AOH}; S_{COH}; S_{AOK}; S_{CON}; S_{BOK}; S_{BON}

S_{ABC}=\dfrac{AC\cdot BH}{2}

ΔABC - равнобедренный, высота BH является медианой и биссектрисой

⇒   AH = HC  ⇒   ΔABH = ΔCBH - по двум катетам. Дальше можно рассматривать только одну половинку равнобедренного треугольника.

S_{AOH} = \dfrac{AH\cdot OH}{2}=\dfrac{\frac{AC}{2}\cdot \frac{BH}{2}}{2}=\dfrac{1}{4}\cdot \dfrac{AC\cdot BH}{2}=\dfrac{1}{4}\cdot S_{ABC}\\ \\ \boxed{\boldsymbol{S_{AOH} =S_{COH} =\dfrac{1}{4}\cdot S_{ABC}}}

S_{AOB}=\dfrac{1}{2}\cdot S_{ABC}-S_{AOH}=\\ \\~~~~~~~~~= \dfrac{1}{2}\cdot S_{ABC}-\dfrac{1}{4}\cdot S_{ABC}=\dfrac{1}{4}\cdot S_{ABC}

У треугольников  AOK и BOK  одинаковая высота  OM.  Поэтому их площади будут пропорциональны основаниям  AK и KB. Чтобы найти отношение АК:КВ, достроим треугольник ABH до прямоугольника ALBH. LB=AH;  AL=BH;   LB║AH;  AL║BH

∠AKL=∠OKB - вертикальные углы.

∠LAK=∠OBK - накрест лежащие углы при AL║BH и секущей АВ.  ⇒  

ΔAKL ~ ΔBKO  подобны по двум углам:

\dfrac{AK}{KB}=\dfrac{AL}{BO}=\dfrac{2BO}{BO}=2~~~\Rightarrow~~~\boldsymbol{AK=2KB}~~~\Rightarrow\\ \\ \\S_{AOK}=\dfrac{AK\cdot OM}{2}=\dfrac{2KB\cdot OM}{2}=2\cdot S_{BOK} \\ \\ S_{AOB}=\dfrac{1}{4}\cdot S_{ABC}\\ \\ S_{AOB}=S_{AOK}+S_{BOK}=\dfrac{1}{4}\cdot S_{ABC}\\ \\ 2\cdot S_{BOK}+S_{BOK}=\dfrac{1}{4}\cdot S_{ABC}\\ \\ 3\cdot S_{BOK}=\dfrac{1}{4}\cdot S_{ABC}~~~\Rightarrow~~~S_{BOK}=\dfrac{1}{12}\cdot S_{ABC}\\ \\ \boxed{\boldsymbol{S_{BOK}=S_{BON}=\dfrac{1}{12}\cdot S_{ABC}}}

S_{AOK}=2\cdot S_{BOK}=2\cdot \dfrac{1}{12}\cdot S_{ABC}=\dfrac{1}{6}\cdot S_{ABC}\\ \\ \\ \boxed{\boldsymbol{S_{AOK}=S_{CON}=\dfrac{1}{6}\cdot S_{ABC}}}

ответ: площади двух треугольников при основании равны и составляют 1/4 часть площади равнобедренного треугольника;

площади двух треугольников при вершине равны и составляют 1/12 часть площади равнобедренного треугольника;

площади двух треугольников при боковых сторонах равны и  составляют 1/6 часть площади равнобедренного треугольника.


Через середину высоты равнобедренного треугольника проведены две прямые, соединяющие её с вершинами
0,0(0 оценок)
Ответ:
andreymikilov
andreymikilov
26.09.2022 16:12
Задача имеет 2 решения, так как деление периметра на части имеет 2 варианта - основание треугольника может входить в 18 или в 10 см.

Обозначим основание за х.
Периметр треугольника равен 18 + 10 = 28 см.
Боковая сторона равна (28 - х) / 2
Половины второй боковой стороны равны (28 - х) / 4.
Примем 1 вариант деление периметра:
((28 - х) / 2) + (28 - х) / 4 = 10
(28 - х) * 3 = 40
84 - 3х = 40
3х = 84 - 40 = 44
х = 44 / 3 =  14.66667 см    это основание
(28 - (44/3)) / 2 =  6.666667     это боковые стороны.

 2 вариант:
((28 - х) / 2) + (28 - х) / 4 = 18
(28 - х) * 3 = 72
84 - 3х = 72
3х = 84 - 72 = 12
х = 12 / 3 =  4 см    это основание
(28 - 4) / 2 =  24 / 2 = 12 см     это боковые стороны.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота