ответ короч
Объяснение:
Дано:
∆АВС - прямокутний (∟В = 90°).
∆А1В1С1 - прямокутний (∟В1 = 90°).
ВС = B1C1; BN - бісектриса ∟АВС;
B1N1 - бісектриса ∆А1В1С1.
Довести: ∆АВС = ∆А1В1С1.
Доведения:
За умовою ∟ABC = 90° i BN - бісектриса ∟ABC.
За означенням бкектриси кута маємо: ∟ABN = ∟NBC = 90° : 2 = 45°.
Аналогічно B1N1 - бісектриса ∟А1В1С1, тоді ∟A1B1N1 = ∟N1B1C1 = 45°.
Розглянемо ∆NBC i ∆N1B1C1:
1) BN = B1N1 (за умовою);
2) ВС = В1С1 (за умовою);
3) ∟NBC = ∟N1B1C1 = 45°.
За I ознакою piвностi трикутників маємо:
∆NВС = ∆N1B1C1. Звідси ∟C = ∟С1.
Розглянемо ∆АВС i ∆А1В1С1:
1) ∟ABC = ∟А1В1С1 = 90°;
2) ВС = B1C1;
3) ∟C = ∟С1.
За ознакою piвностi прямокутних трикутників маємо: ∆АВС = ∆А1В1С1.
Доведено.
1) Противоположные стороны параллелограмма равны. Пусть две меньшие стороны параллелограмма по Х см, тогда две другие по 3Х см.
2 (X + 3X) = 72; 8X = 72
X = 9 см ; 3X = 27 см
ответ: 9 см, 9 см, 27 см, 27 см
2) Диагонали прямоугольника равны и точкой пересечения делятся пополам
AO = BO = CO = DO = BD : 2 = 12 : 2 = 6 см
Противоположные стороны прямоугольника равны
CD = AB = 10 см
= CD + CO + DO = 10 + 6 + 6 = 22 см
3) Диагонали ромба делят углы ромба пополам.
Пусть ∠BAD = 64° ⇒ ∠DAC = ∠BAC = 64° : 2 = 32°
Диагонали ромба пересекаются под прямым углом ⇒
ΔAOD - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90° ⇒
∠ADO = 90° - ∠DAO = 90° - 32° = 58°
ответ : 32° и 58°
4) Противоположные стороны параллелограмма параллельны и равны. Рассмотрим ΔABM и ΔCDK.
AB = CD - противоположные стороны параллелограмма;
∠BAM = ∠DCK - по условию;
∠ABM = ∠CDK - накрест лежащие углы при AB║CD и секущей BD
⇒ ΔABM = ΔCDK по стороне и двум прилежащим к ней углам.
⇒ BM = DK как стороны в равных треугольниках, лежащие против равных углов.
ответ короч
Объяснение:
Дано:
∆АВС - прямокутний (∟В = 90°).
∆А1В1С1 - прямокутний (∟В1 = 90°).
ВС = B1C1; BN - бісектриса ∟АВС;
B1N1 - бісектриса ∆А1В1С1.
Довести: ∆АВС = ∆А1В1С1.
Доведения:
За умовою ∟ABC = 90° i BN - бісектриса ∟ABC.
За означенням бкектриси кута маємо: ∟ABN = ∟NBC = 90° : 2 = 45°.
Аналогічно B1N1 - бісектриса ∟А1В1С1, тоді ∟A1B1N1 = ∟N1B1C1 = 45°.
Розглянемо ∆NBC i ∆N1B1C1:
1) BN = B1N1 (за умовою);
2) ВС = В1С1 (за умовою);
3) ∟NBC = ∟N1B1C1 = 45°.
За I ознакою piвностi трикутників маємо:
∆NВС = ∆N1B1C1. Звідси ∟C = ∟С1.
Розглянемо ∆АВС i ∆А1В1С1:
1) ∟ABC = ∟А1В1С1 = 90°;
2) ВС = B1C1;
3) ∟C = ∟С1.
За ознакою piвностi прямокутних трикутників маємо: ∆АВС = ∆А1В1С1.
Доведено.
1) Противоположные стороны параллелограмма равны. Пусть две меньшие стороны параллелограмма по Х см, тогда две другие по 3Х см.
2 (X + 3X) = 72; 8X = 72
X = 9 см ; 3X = 27 см
ответ: 9 см, 9 см, 27 см, 27 см
2) Диагонали прямоугольника равны и точкой пересечения делятся пополам
AO = BO = CO = DO = BD : 2 = 12 : 2 = 6 см
Противоположные стороны прямоугольника равны
CD = AB = 10 см
= CD + CO + DO = 10 + 6 + 6 = 22 см
3) Диагонали ромба делят углы ромба пополам.
Пусть ∠BAD = 64° ⇒ ∠DAC = ∠BAC = 64° : 2 = 32°
Диагонали ромба пересекаются под прямым углом ⇒
ΔAOD - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90° ⇒
∠ADO = 90° - ∠DAO = 90° - 32° = 58°
ответ : 32° и 58°
4) Противоположные стороны параллелограмма параллельны и равны. Рассмотрим ΔABM и ΔCDK.
AB = CD - противоположные стороны параллелограмма;
∠BAM = ∠DCK - по условию;
∠ABM = ∠CDK - накрест лежащие углы при AB║CD и секущей BD
⇒ ΔABM = ΔCDK по стороне и двум прилежащим к ней углам.
⇒ BM = DK как стороны в равных треугольниках, лежащие против равных углов.