Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам.
AA1/A1B= AC/BC
C1C/BC1= AC/AB
AB=BC => AA1/A1B= C1C/BC1
Если прямые отсекают на секущих пропорциональные отрезки, то прямые параллельны.
AC||A1C1
△ABC~△A1BC1 (углы при основаниях равны как соответственные при AC||A1C1)
k= AC/A1C1 =AB/A1B
AH=√(AB^2 -BH^2) =√(1600 -16*91) =12
Высота в равнобедренном треугольнике является медианой.
AC=2AH =12*2 =24
AA1/A1B= AC/BC =24/40 =0,6
AB/A1B= (AA1 +A1B)/A1B =AA1/A1B +1 =1,6
A1C1= AC/k =24/1,6 =15