Сторону основи і висоту правильної чотирикутної піраміди зменшили у 2 рази при цьому площа бічної поверхні піраміди зменшиться у Варианты 2 , 4 и 8 раз
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
1-вариант.
Задание 1
ответ А. Так как соответственные углы равны.
Задание 2
∠С- 14х+4
∠В- 12х+6
∠ АDC-140 градусов
(14х+4)+(12х+6)=140
14х+4+12х+6=140
26х+10=140
26х=140-10
26х=130
х=5
С=14*5-4=66
ответ: ∠С=66 градусов
Задание 3
∠А-30
∠С-100
СС1-биссектриса-7 см
ВС1-?
∠В=180-(100+75)=5
Так как биссектриса делит угол пополам то ВСС1- равнобедренный => ВС1=СС1= 7см
ответ: ВК1= 7см
Задание 4
САД=30 =>ДАВ=30 т.к АД биссектриса, делит угол на равные части.
∠А=30+30=60
∠В=180-∠А+∠С= 180-(60+50)=70
∠В=70
ответ: ∠В=70
Вроде так.
Объяснение: