Стороны ab, bc и ca равностороннего треугольника abc продолжены за точки a, b и c на отрезки am, bk и cp так, что ma : ab = kb : bc = pc : ca = 2 : 1. найдите периметр треугольника mkp, если периметр треугольника abc равен 9 см, периметр мкв равен 27 см
Обозначим середину стороны DС буквой K. Координаты точки K ищем по формуле деления отрезка пополам
\begin{lgathered}x_K=\dfrac{x_D+x_C}{2}=\dfrac{8+(-4)}{2}=2\\ y_K=\dfrac{y_D+y_C}{2}=\dfrac{-2+(-2)}{2}=-2\end{lgathered}
x
K
=
2
x
D
+x
C
=
2
8+(−4)
=2
y
K
=
2
y
D
+y
C
=
2
−2+(−2)
=−2
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
\begin{lgathered}\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}\\ \\ \\ \dfrac{x-(-2)}{2-(-2)}=\dfrac{y-6}{-2-6}~~~\Rightarrow~~~\dfrac{x+2}{4}=\dfrac{y-6}{-8}~~~\Rightarrow~~~ \boxed{y+2x-2=0}\end{lgathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
2−(−2)
x−(−2)
=
−2−6
y−6
⇒
4
x+2
=
−8
y−6
⇒
y+2x−2=0
ответ: y + 2x - 2 = 0.
Высота пирамиды h = 30 дм опущена в точку пересечения диагоналей квадрата. Построить прямоугольный треугольник:
вертикальный катет - высота пирамиды h = 30 дм;
горизонтальный катет - отрезок, соединяющий основание высоты пирамиды и середину стороны квадрата c = а/2 = 16 дм;
гипотенуза - апофема боковой грани l.
Теорема Пифагора:
l² = h² + c² = 30² + 16² = 900 + 256 = 1156 = 34²
l = 34
Необходимое количество ткани - это площадь поверхности правильной четырехугольной пирамиды.
Площадь основания-квадрата S₀ = a² = 32² = 1024 дм².
Площадь боковой поверхности состоит из четырех равных треугольников S₄ = 4*(1/2)al = 2 * 32 * 34 = 2176 дм²
1) Необходимое количество ткани
1024 + 2176 = 3200 дм²
2) На швы и обрезки дополнительно 25% = 0,25
3200 + 0,25*3200 = 3200 +800 = 4000 дм²