Стороны четырехугольника ABCD AB, BC, CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно 95°, 49°, 71°, 145°. Найдите угол ABC. ответ дайте в градусах.
Прямоугольные треугольники DAM и BAN равны по гипотенузе и острому углу (гипотенузы DA и АВ - стороны ромба, ∠D = ∠B как противоположные углы ромба). Следовательно, ∠DAM = ∠BAN, а так как диагональ АС ромба делит ∠DAB пополам (свойство), то ∠MAC = <NAC = 30°. Тогда в прямоугольных треугольниках MAC и NAC ∠АСМ = ∠ACN = 60° (по сумме острых углов прямоугольного треугольника). Тогда угол ∠С ромба равен 120°, а ∠D = 60° (по сумме углов ромба, прилегающих к одной стороне).
В прямоугольном треугольнике DAM ∠ADM = 60°, ∠DAM=30°.
Против угла 30° лежит катет DM = 5 дм. Тогда гипотенуза DA (сторона ромба) равна 10 дм, а периметр ромба равен
Через две пересекающиеся прямые можно провести ровно одну плоскость. Две прямые из условия лежат в некоторой плоскости a. Пусть третья прямая пересекает каждую из них и не проходит через точку A их пересечения. Тогда у третьей прямой есть хотя бы две общие точки с плоскостью a (как раз эти точки пересечения). Известно, что прямая, имеющая с плоскостью хотя бы две общие точки, лежит в этой плоскости. Тогда третья прямая также лежит в а. Следовательно, какую бы прямую, пересекающую две данные прямые и не проходящую через А мы ни выбрали, она будет целиком лежать в плоскости а, что и требовалось доказать.
Pabcd = 40 дм.
Объяснение:
Прямоугольные треугольники DAM и BAN равны по гипотенузе и острому углу (гипотенузы DA и АВ - стороны ромба, ∠D = ∠B как противоположные углы ромба). Следовательно, ∠DAM = ∠BAN, а так как диагональ АС ромба делит ∠DAB пополам (свойство), то ∠MAC = <NAC = 30°. Тогда в прямоугольных треугольниках MAC и NAC ∠АСМ = ∠ACN = 60° (по сумме острых углов прямоугольного треугольника). Тогда угол ∠С ромба равен 120°, а ∠D = 60° (по сумме углов ромба, прилегающих к одной стороне).
В прямоугольном треугольнике DAM ∠ADM = 60°, ∠DAM=30°.
Против угла 30° лежит катет DM = 5 дм. Тогда гипотенуза DA (сторона ромба) равна 10 дм, а периметр ромба равен
10·4 = 40 дм.