Стороны четырехугольника ABCD параллельны соответственно сторонам прямоугольныка A1 B1 C1 D1. докажите что четырехугольник ABCD является прямоугольником
1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Площадь трапеции равна средней линии умноженной на высоту. Т.е если ввести обозначения: a — нижнее основание b — верхнее основание с — средняя линия d — боковая сторона h — высота S — площадь трапеции P — периметр трапеции, тогда получаем: S=c*h, с=(a+b)/2 (средняя линия равна полусумме оснований). Тогда получаем: S=(a+b)*h/2 Отссюда h=2*S/(a+b) Теперь напишем формулу для периметра: P=a+b+2*d, отсюда a+b=P-2*d Подставляем эту формулу в формулу h=2*S/(a+b) и получаем: h=2*S/(P-2*d)=2*44/(32-2*5)=4 если благодарность
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
a — нижнее основание
b — верхнее основание
с — средняя линия
d — боковая сторона
h — высота
S — площадь трапеции
P — периметр трапеции,
тогда получаем:
S=c*h, с=(a+b)/2 (средняя линия равна полусумме оснований). Тогда получаем:
S=(a+b)*h/2
Отссюда h=2*S/(a+b)
Теперь напишем формулу для периметра:
P=a+b+2*d, отсюда
a+b=P-2*d
Подставляем эту формулу в формулу h=2*S/(a+b) и получаем:
h=2*S/(P-2*d)=2*44/(32-2*5)=4 если благодарность