Стороны каждого из двух подобных треугольников относятся как 2,5: 8: 9: 7. периметр первого четырёхугольника равен 92, 75 см а наименьшая сторона второго равна 14 см. найдите стороны четырёхугольника, периметр второго четырёхугольника и коэффициент подобия.
Площадь треугольника равна половине произведения его высоты на основание.
Основание АВ=4, высоту КН нужно найти.
КН=√(AK²-АН²)
АК-катет прямоугольных треугольников АКС и АКS
Выразим его квадрат из каждого треугольника и приравняем выражения.
АК²=АС²-КС²=16-КС²
АК²=(СS-КС)²=36-36 +12 КС-КС²= 12 КС-КС²
16-КС²=12 КС-КС²⇒
12 КС=16
КС=16:12=4/3
Из треугольника АКС
АК²=16-16/9=128/9
Найдем высоту треугольника АВК по т. Пифагора:
КН²=AK²-KC²=128/9-4=92/9
КН=√(92/9)=2/3*(√23)
S∆ АВК=2/3*(√23)*4:2=4/3*(√23) (ед. площади)
У прямоугольника все углы прямые, и биссектриса дает угол в 45 градусов. Следовательно, треугольник ADE (E - точка пересечения биссектрисы угла А и стороны CD) равнобедренный. Тогда:
1) вторая сторона прямоугольника равна 2,7 дм и его периметр будет равен 2*(7,2 + 2,7) = 19,8 дм.
2) вторая сторона равна 4,5 дм, и его периметр будет равен 2*(7,2 + 4,5) = 23,4 дм.
Поскольку дополнительного уточнения в условии нет, то оба варианта справедливы.
ответ: 19,8 дм или 23,4 дм.