В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Yulia475414
Yulia475414
02.08.2022 19:57 •  Геометрия

Стороны квадрата относятся как 5:3 а площадь равна 960кв.см найти периметр прямоугольника дайте с условием,)

Показать ответ
Ответ:
26040717
26040717
13.10.2021 00:52
Положим что Z середина стороны BC .
1)Тогда по теореме Менелая для треугольника PZM секущая AC получаем CZ/PC*PL/ML*AM/AZ=1 , но AZ медиана , значит AM/AZ=3/2, откуда PL=3ML*PC/(2CZ) , значит PM=PL+ML=ML*(3PC+2CZ)/(2CZ) (*1)
2)По теореме Менелая для треугольника BKP секущая AZ получаем BZ/PZ*PM/MK*AK/AB=1
Либо , что тоже самое что
CZ/(PC+CZ) * PM/MK * AK/AB = 1
Откуда MK=PM*(CZ/(PC+CZ))*(AK/AB) (*2)
Выразим соотношение AK/AB через PC и CZ .

3) По той же теореме для треугольника ABC , секущая PK получаем BK/AK * (AL/CL) * (PC/(PC+2CZ)) = 1 .
Но (1/2)*(AL/CL)*PC/(PC+CZ)=1 (теорема Менелая для треугольника ACZ) откуда AL/CL=2(PC+CZ)/PC .
Значит BK/AK=(PC+2CZ)/(2PC+2CZ) , откуда AK/AB=2(PC+CZ)/(3PC+4CZ) .

4) Подставляя (*2) получаем
MK=ML(3PC+2CZ)/(3PC+4CZ) (*3)

5) Из (*1) а именно PM=ML*(3PC+2CZ)/(2CZ) по условию требуется доказать что 1/ML+1/MP=1/MK подставим
1/ML+2CZ/(ML*(3PC+2CZ)) = (3PC+4CZ)/(ML*(3PC+2CZ))= 1/MK
Откуда MK=ML(3PC+2CZ)/(3PC+4CZ)
А это и есть (*3) доказанная ранее.
0,0(0 оценок)
Ответ:
samokrut4501
samokrut4501
28.10.2022 20:52
Медианы треугольника пересекаются в точке О, которая делит каждую медиану в отношении 2:1 считая от вершины (свойство).
AO составляет 2/3 от 3, ОА1 составлят 1/3 от 3.
АО = 2. ОА1 = 1
СО составляет 2/3 от 12, ОС1 составляет 1/3 от 12
СО = 8. OC = 4

Найдем площадь треугольника AOC по формуле Герона:
S = \sqrt{p*(p - a)* (p - b)* (p - c) }

p = (a + b + c) / 2

p(AOC) = (AO + CO + AC) / 2
p(AOC) = (2 + 8 + 7) / 2 = 17 / 2

S(AOC) = \sqrt{ \frac{17}{2} * ( \frac{17}{2} - 2) * ( \frac{17}{2} - 8) * ( \frac{17}{2} - 7) }\sqrt{ \frac{17}{2} * \frac{17 - 4}{2} * \frac{17 - 16}{2} * \frac{17 - 14}{2} }\sqrt{ \frac{17 * 13 * 1 * 3}{2*2*2*2} }\sqrt{ \frac{663}{16} } (кв. ед)

Треугольник делится тремя медианами на шесть равновеликих треугольников (свойство) ⇒ S(ABC) = 3 * S(AOC)

S(ABC) = 3 \sqrt{ \frac{663}{16} }\frac{3}{4} \sqrt{663} (кв. ед)
-----------------------------------------------------------------------------------------------
Площадь треугольника AOB1 равна половине площади треугольника AOC.

S(AOB1) = S(AOC) / 2

S(AOB1) = \frac{1}{2} * \sqrt{ \frac{663}{16} } = \sqrt{ \frac{663}{16 * 4} } = \sqrt{ \frac{663}{64} } (кв. ед)

p(AOB1) = (AO + OB1 + AB1) / 2
AB1 = AC / 2
AB1 = 7/2
OB1 = x

p(AOB1) = (2 + x + 7/2) / 2
p (AOB1) = (\frac{4 + 2x + 7}{2} ) / 2\frac{11 + 2x}{4}

S(AOB1) = \sqrt{ \frac{11+2x}{4} * ( \frac{11 + 2x}{4} - 2) * ( \frac{11 + 2x}{4} - x) * ( \frac{11 + 2x}{4} - \frac{7}{2}) } 

\sqrt{ \frac{11+2x}{4} * \frac{11+2x - 8}{4} * \frac{11 +2x - 4x}{4} * \frac{11+2x - 14}{4} }\sqrt{ \frac{663}{64} }

\sqrt{ \frac{(11+2x) * (2x+3) * (11-2x) * (2x-3)}{4*4*4*4} } = \sqrt{ \frac{663}{64} }

Возводим обе части уравнения в квадрат

\frac{(11+2x)*(11-2x)*(2x+3)*(2x-3)}{256}\frac{663}{64}

Умножаем обе части уравнения на 256
(121 - 4x²)(4x² - 9) = 2652
484x² - 16x⁴ - 1089 + 36x² - 2652 = 0
-16x⁴ + 520x² - 3741 = 0
x² = t
ОДЗ t > 0, т.к. результат возведения в четную степень не может быть отрицательным и длина не может быть равной нулю

-16t² + 520t - 3741 = 0
16t² - 520t + 3741 = 0
D = (-520)² - 4 * 16 * 3741 = 270400 - 239424 = 30976
√D = 176 

t1 = (520 + 176) / 32 = 696/32 = 21,75 

t2 = (520 - 176) / 32 = 344/32 = 10,75

Оба корня отвечают ОДЗ
X1 = √21,75
X2 = √10,75

BB1 = OB1 * 3
1) OB1 = √21,75, тогда BB1 = 3√21,75
2) OB1 = √10,75, тогда BB1 = 3√10,75

При подстановке обоих вариантов в формулу Герона для треугольника AOB1 получается одинаковая площадь

(Рисунок схематический)
Втреугольнике abc медианы aa₁, bb₁, cc₁ пересекаются в точке o. известно, что aa₁ = 3. cc₁ = 12. ac
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота