В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
Трапеция АВСD равнобедренная, значит ее диагонали равны. АС=BD. Проведем прямую СР параллельно диагонали BD до пересечения с продолжением основания AD в точке Р. BCPD параллелограмм и DP=BC. Треугольник АСР прямоугольный и равнобедренный, так как катеты CP и АС перпендикулярны (АС перпендикулярна BD - дано, а CP параллельна BD по построению). Пусть катеты AC и CР равны X. Тогда гипотенуза AP=Х√2 (по Пифагору). CH - высота треугольника АСР, проведенная из вершины прямого угла и равна произведению катетов, деленному на гипотенузу (свойство). Итак, CH=AC*CP/AP. CH=14см (дано). Тогда 14=Х^2/(Х√2). Отсюда Х=14√2, а АР=14√2*√2=28см. Но АР=AD+BC. Тогда площадь трапеции равныS=(AD+BC)*CH/2 или S=28*14/2=196 см^2. ответ: S=196 см^2.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона.
Проведем прямую СР параллельно диагонали BD до пересечения с продолжением основания AD в точке Р. BCPD параллелограмм и DP=BC.
Треугольник АСР прямоугольный и равнобедренный, так как катеты CP и АС перпендикулярны (АС перпендикулярна BD - дано, а CP параллельна BD по построению).
Пусть катеты AC и CР равны X. Тогда гипотенуза AP=Х√2 (по Пифагору).
CH - высота треугольника АСР, проведенная из вершины прямого угла и равна произведению катетов, деленному на гипотенузу (свойство).
Итак, CH=AC*CP/AP. CH=14см (дано). Тогда
14=Х^2/(Х√2). Отсюда Х=14√2, а АР=14√2*√2=28см.
Но АР=AD+BC. Тогда площадь трапеции равныS=(AD+BC)*CH/2 или S=28*14/2=196 см^2.
ответ: S=196 см^2.