Стороны одного треуголь- ника равны 21 см, 27 см, 12 см. Стороны другого тре- угольника относятся как 7:9:4, а его большая сторона равна 54 см. Найдите отно- шение площадей этих треу- Гольников.
Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.
противоположные грани равны между собой;
2.
боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.
как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.
Сейчас : ) площадь полной поверхности (sполн) равна 36. решение: sполн = 4sграни + 2sоснования. грани в прямой призме с основанием в виде ромба равны. sграни=h*a=3а, где а - сторона ромба. sоснования=2*sтреугольника. sтреугольника=(а*h)/2, так как треугольник с углом 60 град - равносторонний. далее sоснования=2*(a*h)/2=a*h=3а=sграни; sполн = 4sграни + 2sграни = 6sграни = 6*3*а= 18*а. теперь осталось найти а. рассмотрим равносторонний треугольник (половина основания призмы).найдём высоту: h=(2√3)/2; теперь рассмотрим прямоугольный треугольник (половина основания призмы) и найдём а. cos(60град/2)=((2√3)/2)/а, отсюда √3/2=√3/а, а=2. подставляем в формулу sполн = 18*2 =36
Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.противоположные грани равны между собой;
2.боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.